
Tel Aviv University
Raymond and Beverly Sackler Faculty of Exact Sciences

Blavatnik School of Computer Science

Explicit Constructions and Lower Bounds
in Coding Theory

A thesis submitted for the degree of
Doctor of Philosophy

By

Roni Con

Thesis supervisors: Prof. Amir Shpilka and Prof. Itzhak Tamo

Submitted to the Senate of Tel Aviv University

September 2023

Contents

Abstract 3

Acknowledgements 5

1 Introduction 6

2 Nonlinear Repair of Reed–Solomon Codes 11
2.1 Introduction . 11

2.1.1 Coding for distributed storage systems . 11
2.1.2 The setup . 12
2.1.3 Repair of RS codes . 12
2.1.4 Linear and nonlinear repair schemes . 13
2.1.5 Our contribution . 14
2.1.6 Organization of this chapter . 14

2.2 A General framework for node repair . 15
2.3 Asymptotically MSR RS codes over Fp . 17

2.3.1 Existence of asymptotically [n, 2, d] MSR RS codes over Fp 18
2.3.2 Outperforming linear repair schemes over field extensions 19

2.4 Explicit constructions of RS codes . 20
2.4.1 A toy example . 21
2.4.2 An RS code construction with k < d ≤ n/2 . 22
2.4.3 Repairing by any d helper nodes . 24

2.5 An improved lower bound on the bandwidth . 25
2.6 Concluding remarks and open problems . 27
2.7 Appendix . 28

2.7.1 Proof of Lemma 2.4.1 . 28
2.7.2 Repairing αi for i ∈ {1, 2, 3} . 28

3 Linear codes correcting insertions and deletions 30
3.1 Introduction . 30

3.1.1 Insertion and Deletions . 30
3.1.2 Linear codes . 31
3.1.3 Basic definitions and notation . 31
3.1.4 Previous results . 31
3.1.5 Our results . 32
3.1.6 Proof idea . 32
3.1.7 Organization of the chapter . 33

3.2 Linear Insdel Codes over Finite Alphabet via Synchronization Strings 33
3.2.1 Half-linear insdel codes . 34
3.2.2 Full linear insdel codes . 35

3.3 Binary Linear Codes . 37

1

3.3.1 The inner code . 37
3.3.2 Construction of our code . 39
3.3.3 Analysis . 39
3.3.4 Proof of Theorem 3.1.10 . 44

3.4 Open questions . 45

4 Reed–Solomon codes correcting insertions and deletions 46
4.1 Introduction . 46

4.1.1 Previous results . 46
4.1.2 Our results . 47
4.1.3 Proof idea . 47
4.1.4 Organization . 48

4.2 Optimal Reed-Solomon codes exist . 48
4.2.1 An algebraic condition . 48
4.2.2 Existence using Schwarz-Zippel-DeMillo-Lipton lemma 49
4.2.3 Existence using the Lovász-local-lemma . 51

4.3 Deterministic construction for any k . 53
4.4 Explicit construction for k = 2 with quartic field size . 55

4.4.1 A lower bound on the field size . 56
4.5 Summary and open questions . 57

5 Constructions of coding schemes for the binary deletion channel and the Poisson re-
peated channel 58
5.1 Introduction . 58

5.1.1 Lower bounds on the capacity of the BDC . 59
5.1.2 Upper bounds on the capacity of the BDC . 59
5.1.3 Efficient constructions for the BDC . 59
5.1.4 The Poisson repeat channel . 59
5.1.5 Our Results . 60
5.1.6 Construction and Proof Overview . 60
5.1.7 Organization . 63

5.2 Preliminaries . 63
5.2.1 Facts from Probability . 63
5.2.2 The Code of Haeupler and Shahrasbi [HS17] . 65

5.3 The Inner Code . 65
5.4 Construction . 71
5.5 Correctness and Analysis . 72

5.5.1 Correctness of Decoding Algorithm . 72
5.5.2 Proof of Theorem 5.1.1 . 84

5.6 Rates For Fixed Values of Deletion Probabilities . 85
5.7 Poisson Repeat Channel . 86

5.7.1 Construction . 87
5.7.2 Correctness of Decoding Algorithm . 88

2

Abstract

At the core of coding theory lies a fundamental challenge. We have two parties named Alice and Bob. Alice
intends to send messages to Bob, but there is an intermediary that corrupts these messages. The question
is: Can Alice still transmit messages to Bob in a way he can understand them? Error-correcting codes,
henceforth referred to as ’codes,’ represent clever methods for encoding data so that one can recover the
original information even if parts of it are corrupted.

Codes are employed not only in communication, but also in disks, storage systems, and in general in
physical media that might have errors. Moreover, coding theory’s reach extends into theoretical computer
science, impacting areas like complexity and cryptography.

Given a storage medium or a communication channel prone to errors, two primary challenges arise in
coding theory. Firstly, it is essential to characterize the limits of performance given the error model. In other
words, what is the best performance one can hope for? The second challenge involves designing efficient
codes capable of robust error recovery, ideally achieving these limits. The results presented in this thesis
are of these types where we focus on addressing innovative challenges that are both modern and driven by
practical applications.

The first part of this thesis addresses a fundamental issue in the field of coding for distributed storage
systems. In modern distributed storage systems, codes are used to safeguard data against server failures.
When a server fails, a new replacement server is installed, and then it triggers a data recovery process
utilizing the remaining operational servers. The task is to do this process with as little bandwidth (that is,
the amount of bits transferred between the functional servers to the new replacement server) as possible.
Given that a notable number of distributed storage systems deploy Reed-Solomon (RS) codes, the repair
problem for RS codes received a lot of attention recently. By now, there are examples of RS codes that have
efficient repair schemes. However, these schemes fall short in several aspects; they require a considerable
field extension degree. They do not provide any nontrivial repair scheme over prime fields. Lastly, they are
all linear repairs, i.e., the computed functions are linear over the base field. Motivated by these, we study
the problem of nonlinear repair for RS codes. Our main results are the first nonlinear repair schemes of RS
codes with asymptotically optimal repair bandwidth. Importantly, these are the only known nonlinear repair
schemes across all codes, that outperform all linear schemes. Lastly, we derive an improved lower bound for
the repair bandwidth of RS codes over prime fields.

In the second part of this thesis, we focus on linear codes that can recover from insertions and deletions.
Efficient codes that can handle these errors (called also synchronization errors) hold immense value in DNA-
based storage—a novel and captivating storage medium that has recently attracted significant attention.
In this part, we construct linear codes over small alphabets that can recover efficiently from adversarial
insertions and deletions. Notably, our constructed codes offer better rate-distance tradeoffs than those found
in earlier works. We also show that some RS codes reach the optimal rate-distance tradeoff for a linear
code, and also provide an explicit construction over a large field. Additionally, for the special case of two-
dimensional RS codes, which have been extensively studied in the literature, we provide a construction for
an optimal RS code (one with maximal error correction capability) over a field that is exponentially smaller
than in previous constructions.

In the third part of this thesis, we study the binary deletion channel, which is the most basic channel
that models deletions. This channel models the situation where bits of a transmitted message are deleted
(i.e. removed) from the message randomly and independently with probability p. In this part, we construct

3

efficient codes for this channel with rate (1− p)/16.
The first part of this thesis is based on a joint work with Itzhak Tamo [CT22]. The second part is based

on joint works with Amir Shpilka and Itzhak Tamo [CST22, CST23]. The third part is based on a joint work
with Amir Shpilka [CS22].

4

Acknowledgements

5

Chapter 1

Introduction

The purpose of coding theory is to study techniques that enable reliable and efficient communication over
channels or mediums that are prone to errors or noise. There are two main error models - a worst-case
model and an average-case model. The first model, which is very common in the theory of computation and
has found many applications there, is called the Hamming model [Ham50]. This is a worst-case setting in
which a transmitted message is subjected to an adversarial corruption of a fraction p of its entries and we
must recover the original message regardless of the location of the errors. Thus, if the adversary is allowed
to corrupt a fraction p of the entries of a transmitted message, then a code that allows perfect recovery is a
subset of the messages such that any two codewords (i.e. elements of the code) have normalized hamming
distance larger than 2p.

The second error model was first considered by Shannon in his pioneering work [Sha48]. This is an
average-case model in which a transmitted message is subjected to a random corruption such as bit flips,
bit erasures, bit deletions, etc., where each bit is corrupted independently at random according to some
distribution. A channel is basically determined by the probability distribution of the corruptions. Since the
corruption is random, it can be the case that the whole word is corrupted. In particular, in this setting,
the most we can expect from the decoder is to decode the original word with high probability (over the
randomness of the corruptions).

To explain the questions that we study we recall some basic notions from coding theory. Let Σ denote
an alphabet set. An error-correcting code can be described either as an encoding map C : Σk → Σn or,
abusing notation, as the image of such a map C. A code C is said to be an [n, k]q linear code if C ⊆ Fn

q is
a linear subspace of dimension k. The rate of such a code C is Rate(C) = k/n, which intuitively captures
the amount of information encoded in every bit of a codeword. Naturally, we would like the rate to be as
large as possible, but there is a tension between the rate of the code and the amount of errors/noise it can
tolerate.

The major problems in coding theory are on one hand to determine the largest rate for which one can
uniquely recover the original message from a corrupted codeword and on the other hand, to design explicit
codes with efficient encoding and decoding algorithms that achieve this rate. This of course depends on the
nature of corruption.

Notations

For positive integers a < b let [a, b] = {a, a+1, . . . , b} and [a] = {1, 2, . . . , a}. Throughout this thesis, log(x)
refers to the base-2 logarithm and h(x) refers to the binary entropy function, that is, h(x) = −x log(x) −
(1− x) log(1− x). For a prime power q, we denote with Fq the field of size q and for a prime number p, Fp

denotes the prime field with p elements.

6

Scope of this thesis

Part 1 - Nonlinear Repair of Reed–Solomon Codes

In this part, we address a coding-theoretic problem that has its origins in the industry. This problem, referred
to as the ‘repair problem,’ holds significant importance within the domain of distributed storage systems.
In such systems, a large file is encoded using an erasure-correcting code and then distributed over many
nodes. More specifically, the file is cut into k data fragments that form the input to an erasure-correcting
code which generates n data fragments. Then, the system stores them on n distinct storage devices in
order to increase data reliability. When a node fails, we would like to be able to set up a replacement node
efficiently using information from the remaining nodes. Since an erasure-correcting code is used, repairing
the lost data amounts to decoding a single erasure in the codeword. The primary parameter of focus is
the repair bandwidth which is the total amount of information downloaded from the functional nodes to the
replacement node. The problem of recovering the failed node with low repair bandwidth was first considered
in the seminal paper of Dimakis et al. [DGW+10] and has since been the topic of much research.

Today, many distributed storage systems utilize Reed-Solomon (RS) codes in practice, such as the specific
[14, 10]-RS code used in the Facebook storage system [SAP+13]. Therefore, it comes as no surprise that the
repair problem in RS codes received attention from the community [SPDC14, GW17b, TYB17, DDKM18,
BBD+22]. We recall the definition of RS codes

Definition 1.0.1. Let α1, α2, . . . , αn be distinct points of the finite field Fq of order q. For k < n the [n, k]q
RS code defined by the evaluation set {α1, . . . , αn} is the set of codewords

{(f(α1), . . . , f(αn)) | f ∈ Fq[x],deg f < k} .

When n = q, the resulting code is called a full-length RS code.

In the distributed storage setting, each evaluation point, f(αi), i ∈ [n] is distributed to the ith node.
Thus, when we say the ith node, we refer to the code symbol f(αi). Assuming that the nth node has failed,
i.e., the value of f(αn) is lost, the question boils down to how much information is needed from the remaining
nodes storing f(α1), . . . , f(αn−1), in order to determine f(αn). It is clear that any k values of f(αi) suffice to
recover the polynomial f , and in particular recover f(αn). This repair is termed as the “trivial repair” and
the amount of bandwidth needed for this repair is k · log2 q. However, if one contacts d nodes where d > k,
then it is known that one can repair a failed node with much less bandwidth [SPDC14, GW17b, TYB17].
We note that in distributed storage, d, which is often called the number of helper nodes, is the number of
nodes that participate in the repair (and not the distance of the codes).

Up until our work, all repair schemes for distributed storage systems had been linear, meaning that the
information transmitted from each node to the replacement node was a linear function (over the base field)
of the data it stored. As a result, all RS codes used in previous work to address the repair problem had to
be defined over extension fields. An open question that appeared in [GW17b] asked “How much better can
one do with non-linear repair schemes?”

In Chapter 2, we design nonlinear repair schemes for RS codes over prime fields that asymptotically
achieve the optimal bandwidth. Our schemes are the first nonlinear repair schemes in the literature and we
show that they outperform all linear repair schemes for RS codes over prime fields.

Our main results are

1. For any 2 < d < n, we show that 1− o(1) fraction of all the [n, 2]p RS codes are asymptotically MSR
codes, where the term o(1) tends to zero as p tends to infinity. Namely, any code symbol admits an
asymptotically optimal repair by any set of d helper nodes.

2. For any k < d ≤ n/2 we present an explicit construction of an [n, k]p RS code such that its symbols
can be partitioned into two sets of equal size, such that each symbol admits an asymptotically optimal
repair using any d helper nodes from the other set.

7

3. Unlike the problem of repairing RS codes over field extensions, we show that one can not achieve
the cut-set bound with equality, and over prime fields, one can obtain a tighter lower bound on the
total incurred bandwidth. Concretely, we improve the cut-set bound by showing that every node must
transmit another additive factor of Ω(log(k)/(d− k + 1)) bits.

This part of the thesis is based on the work done in [CT22].

Part 2 - Linear codes correcting insertions and deletions

In this part, we study how well linear codes perform against adversarial insertions and deletions (insdel for
short). An insertion error is when a new symbol is inserted between two symbols of the transmitted word.
A deletion is when a symbol is removed from the transmitted word. For example, over the binary alphabet,
when 100110 is transmitted, we may receive the word 1101100, which is obtained from two insertions (1 at
the beginning and 0 at the end) and one deletion (one of the 0’s at the beginning of the transmitted word).
We note that in this model of insertions and deletions, the length of the output can be different than the
length of the originally transmitted message. Generally, insdel errors cause the sending and receiving parties
to become “out of sync” which makes them inherently more difficult to deal with.

Mitzenamacher wrote in his excellent survey [Mit09] that “Channels with synchronization errors, includ-
ing both insertions and deletions as well as more general timing errors, are simply not adequately understood
by current theory. Given the near-complete knowledge we have for channels with erasures and errors... our
lack of understanding about channels with synchronization errors is truly remarkable.”

Insdel errors appear in diverse settings such as optical recording, semiconductor devices, integrated
circuits, and synchronous digital communication networks. Recently, codes for correcting insdel errors have
attracted a lot of attention due to their possible application in correcting errors in DNA storage. Unlike
classical optical, magnetic, and flash storage technologies, DNA-based storage does not require an electrical
supply to maintain data integrity. Furthermore, DNA-based storage system allows very high data densities
over classical storage technologies. Given the trends in cost decreases of DNA synthesis and sequencing, it
is now acknowledged that DNA storage may become a highly competitive archiving technology [CCS+18].
It is thus natural that designing codes for DNA storage and studying the limitations of this model received
a lot of attention recently [HSRD17, LSWZY19, HMG19, BLOS+21, SH+22].

Linear codes over small alphabets. Due to the importance of the insdel model and our lack of under-
standing of some basic problems concerning it, the model has attracted many researchers in recent years
[HS17, BGZ17, GW17a, CJLW18, Hae19, CGHL21, GH21] (see also the recent excellent survey [HS21]).
However, even the basic question of whether there exist good linear codes, over small alphabets, for the
insdel model was unknown until the recent work of Cheng, Guruswami, Haeupler, and Li [CGHL21] where
it was shown that there are linear codes over Fq that can correct δ fraction of insertions and deletions and
have rate (1 − δ)/2 − h(δ)/ log2(q). On the other hand, [CGHL21] showed that linear codes over Fq that
can decode from a δ fraction of insdel errors cannot have rate larger than (1− q

q−1δ)/2 + o(1). This bound
is called the “half-Plotkin bound” and by removing the dependence on the field size, they formulated the
“half-Singleton bound”, namely, R ≤ (1− δ)/2+ o(1). They also constructed explicit codes with (extremely
small) rates bounded away from zero that can efficiently correct up to a δ < 1/400 fraction of insdel errors.

In Chapter 3 we significantly improve their construction. We construct efficient linear codes that get
much closer to the rate-distance tradeoff upper bounds. Specifically, our results are

1. We construct linear codes over Fq, for q = poly(1/ε), that can efficiently decode from a δ fraction of
insdel errors and have rate (1− 4δ)/8− ε.

2. We construct binary linear codes that can efficiently correct up to δ < 1/54 fraction of deletions and
have rate R = (1− 54 · δ)/1216.

Reed Solomon codes. Reed-Solomon codes (RS-codes for short) are the most widely used family of codes
in theory and practice. Among their applications are QR codes [Soo08], secret sharing schemes [MS81],

8

space transmission [WB99], encoding data on CDs [WB99] and more. The ubiquity of these codes can be
attributed to their simplicity as well as to their efficient encoding and decoding algorithms. As such, it is an
important problem to understand whether they can also decode from insdel errors. This question received
a lot of attention recently [SNW02, WMSN04, TSN07, DLTX19, LT21, CZ21, LX21], but besides very few
constructions (i.e., evaluation points for RS-codes), not much was known before our work.

In Chapter 4, we show that there are RS codes that achieve the best rate-distance tradeoff that a linear
code can achieve against insdel errors, namely, the achieve the half-Singleton bound. We also give explicit
constructions (i.e. sets of evaluation points) that define RS-codes that achieve this bound. As the field
sizes that we get grow very fast, our construction runs in polynomial time only for very small values of k.
Additionally, for the special case of two-dimensional RS codes, we provide a construction for an optimal
RS code (one with maximal error correction capability) over a field that is exponentially smaller than in
previous constructions. Specifically, our results are

1. For q = O(n4k−2) there exists an [n, k]q RS-code defined by n distinct evaluation points α1, . . . , αn ∈ Fq,
that can decode from n− 2k + 1 adversarial insdel errors.

2. There is a deterministic construction of an [n, k]q RS-code that can correct from n−2k+1 insdel errors

where q = O
(
nk2·((2k)!)2

)
. The construction runs in polynomial time for k = O(log(n)/ log log(n)).

3. For any n ≥ 4, there exists an explicit [n, 2]q RS-code that can correct from n− 3 insdel errors, where
q = O(n4).

This part of the thesis relies on the work done in [CST22, CST23].

Part 3 - The binary deletion channel

In this part, we consider the binary deletion channel (BDC) with parameter p. This channel models the
situation where bits of a transmitted message are deleted (i.e. removed) from the message randomly and
independently with probability p. One of the most fundamental questions when studying a channel is to
determine its capacity, i.e., the maximum achievable transmission rate over the channel that still allows
recovering from the errors introduced by the channel, with high probability. In spite of many efforts (see
the excellent surveys [Mit09, CR20]), the capacity of the BDCp is still not known and it is an outstanding
open challenge to determine it. Yet, in the regime where p → 1, we know that the capacity is at least
(1 − p)/9 [MD06] and at most 0.4143(1 − p) [FD10, Dal11]. The lower bound given by [MD06] is achieved
via a probabilistic construction and does not yield an explicit and efficient construction with this rate. Our
focus in this part is to construct explicit and efficient codes with high rates for the BDC.

Guruswami and Li [GL18] present a deterministic and efficient code construction for the BDCp with rate
(1−p)/120 for all values of p. This rate is smaller than Mitzenmacher’s bound, but it is the first construction
with rate that scales proportionally to (1−p) for p → 1. In Chapter 5, we improve the construction of [GL18]
and provide an efficient construction of codes that have rate (1− p)/16.

We also show that the same techniques give efficient codes for the Poisson repeat channel. In the PRC
with parameter λ, each bit of the message is (randomly and independently) replaced with a discrete number
of copies of that bit, distributed according to the Poisson distribution with parameter 0 < λ. This channel
was first introduced in [MD06] and has tight connections to BDC as explored also in [Che18].

The results in this part are

1. Let p ∈ (0, 1). There exists a family of binary error correcting codes {Ci}∞i=1 for the BDCp where the
block length of Ci goes to infinity as i → ∞ and Ci can be constructed in polynomial time, encoded
in linear time, decoded in quadratic time, and has rate (1− p)/16.

2. Let λ ≤ 0.5. There exists a family of binary error correcting codes {Ci}∞i=1 for PRCλ where the block
length of Ci goes to infinity as i → ∞ and Ci can be constructed in polynomial time, encoded in linear
time, decoded in quadratic time, and has rate at least λ/17.

9

After our work was published, the works [Rub22, PLW22] showed how to convert any code to the BDC
(not necessarily explicit) into an explicit code that has efficient encoding and decoding algorithms with a
negligible decrease in the rate. Therefore, the codes of [MD06] with rate (1 − p)/9 can be converted to
explicit and efficient codes.

This part is based on the work done in [CS22].

10

Chapter 2

Nonlinear Repair of Reed–Solomon
Codes

2.1 Introduction

2.1.1 Coding for distributed storage systems

The purpose of distributed storage systems is to store data reliably over long periods of time using a dis-
tributed collection of storage nodes which may be individually unreliable. Ensuring reliability in such systems
requires some redundancy. Thus, a natural solution is to use an error-correcting code: a file that needs to
be stored in the system is cut into k data fragments that form the input to an erasure correcting code. The
code then generates n data fragments out of the k input fragments, and the system stores them on n distinct
storage devices in order to increase data reliability.

One of the most prevalent scenarios that needs to be addressed in such a system, is the failure of a single
storage node and the efficiency of its repair [RSG+14, Section 6.6] (measured in terms of system resources).
When this happens we would like to rapidly repair the data that was lost and store it on a replacement
node. Since an erasure-correcting code is used, repairing the lost data amounts to decoding a single erasure
in the codeword. This problem, called the (exact) repair problem was first considered in the seminal paper
of Dimakis et al. [DGW+10] and has since witnessed an explosive amount of research. However, despite
considerable progress, there are still many challenges to overcome. To deal with the repair problem, one has
to design a repairing scheme, i.e., an algorithm that uses the information stored in the remaining functional
nodes and recovers the information that was stored on the failed node. A first and naive solution is to use a
linear [n, k]q-maximum distance separable (MDS) code which has the property that the original file can be
recovered from the content stored on any k out of n nodes. [n, k]q MDS codes are widely used in storage due
to their optimal resiliency for a given amount of redundancy, i.e., they can recover from any n− k erasures
by the information stored on the remaining k nodes. In the scenario of the repair problem, if a node fails,
we can download k symbol from any k nodes and recover the entire file and in particular, the data that was
stored on the failed node. We call this repair, the trivial repair.

The main parameter of a repairing scheme that we wish to optimize is the bandwidth of the scheme, i.e.,
the number of bits that are transmitted (during the repair of a failed node) from the functional nodes, in
order to recover the data on the failed node. One can easily see that in the trivial repair, the bandwidth
is exactly k · ⌈log(q)⌉ where q is the alphabet size of the code. The main goal is to minimize the repair
bandwidth since a large bandwidth can clog the network. Indeed, this was the main subject of many works
[DGW+10, ERR10, GERCP13, PDC13, TWB12, WTB16, RSK11], just to name a few.

11

2.1.2 The setup

Before formally defining and discussing RS codes’ repair problem, we begin with basic definitions of linear
codes.

An [n, k] array code C, with subpacketization L over a finite field F is a linear subspace C ⊆ FL×n over
F and dimension kL. The length and the rate of the code are n and k/n, respectively, and the elements of
C are called codewords. We view each codeword in this code as an L× n matrix. The ith (code) symbol of
a codeword is the ith column of the codeword, which is a vector of length L over F. An [n, k] array code is
called MDS if each codeword is uniquely determined by any k of its symbols. Lastly, scalar codes (which are
the more common mathematical object when one refers to a code) are array codes with L = 1. Hence, any
scalar code is also an array code. Furthermore, a scalar code C over a field extension E with a subfield F,
where [E : F] = L can be viewed as an array code over F and subpacketization L, simply by expanding each
symbol of the code to a column vector of length L over F, according to some basis of E over F.

In a distributed storage system that employs an array code of length n, it is assumed that each code symbol
resides on a distinct storage device (node) to increase the data reliability in case of a node malfunctioning.
As already mentioned, the most common scenario in such systems is a single node’s failure, which is a single
symbol erasure in the coding theory terminology. Such an event triggers a repair scheme whose goal is to
recover the erased symbol by receiving information from a subset of the remaining n− 1 nodes, called helper
nodes. We mention that we interchangeably use the term node and a symbol of the code in the sequel and
say that node i holds (stores) the ith symbol. The figure of merit considered in this problem is the total
incurred bandwidth across the network due to the repair scheme. In other words, how many bits the helper
nodes need to transmit to repair the failed node. This quantity is called the repair bandwidth whose formal
definition is given next.

Definition 2.1.1 (Repair bandwidth). Let C be an [n, k] MDS array code. For i ∈ [n] and a subset
D ⊆ [n] \ {i}, |D| = d ≥ k of helper nodes, define N(i,D) as the smallest number of bits that need to be
transmitted from the helper nodes D in order to repair the failed node i. The repair bandwidth of the code C
with d helper nodes is defined as

max
i∈[n]

D⊆[n]\{i},|D|=d

N(i,D) .

Note that the transmitted information from each helper node can be any function of the symbol it holds.
Next, we shall state the well-known lower bound on the repair bandwidth, called the cut-set bound, derived
by Dimakis et al. in the seminal work [DGW+10].

Theorem 2.1.2. [DGW+10] Let C be an [n, k] MDS array code with subpacketization L over a field F, then
for every i ∈ [n] and every set of d helper nodes D ⊆ [n] \ {i}

N(i,D) ≥ dL log(|F|)
d+ 1− k

. (2.1)

MDS codes are widely used in practice due to their optimal resiliency to erasures for the given amount
of added redundancy. Therefore, MDS codes that also attain the cut-set bound during the repair scheme
are highly desirable.

An [n, k] MDS code achieving the cut-set bound (2.1) with equality for every failed node i by every set
of d helper nodes is called an [n, k, d] MSR (minimum storage regenerating) (array) code.

2.1.3 Repair of RS codes

RS codes are the most known MDS codes, and they have found many applications both in theory and practice
(some applications include QR codes [Soo08], Secret sharing schemes [MS81], space transmission [WB99],
encoding data on CDs [WB99] and more). The ubiquity of these codes can be attributed to their simplicity
and their efficient encoding and decoding algorithms. Thus, it might be surprising that RS codes were not
considered a possible solution for the repair problem in distributed storage systems. In fact, many researchers

12

believed that RS codes do not admit efficient repair schemes except for the trivial scheme. Therefore, several
MSR (that are not RS codes) codes were constructed, e.g., [YB17a, YB17b, RSK11, WTB16, GFV17,
RSE17]. Yet, the problem of understanding the efficiency of the repair of RS codes remained unresolved,
and since many distributed storage systems in fact employ RS codes (e.g., Facebook Hadoop Analytics
cluster employs a [14, 10] RS code [SAP+13]), this problem assumed even greater importance.

In [GW17b] it was shown that the repair problem of RS codes could be seen as a new and interesting twist
on the standard interpolation problem of polynomials. Thus, studying this problem might have theoretical
implications since polynomial interpolation is widely used across all areas of mathematics. Before explaining
the new twist on the interpolation problem, we give next a formal definition of RS codes.

Definition 2.1.3. Let α1, α2, . . . , αn be distinct points of the finite field Fq of order q. For k < n the [n, k]q
RS code defined by the evaluation set {α1, . . . , αn} is the set of codewords

{(f(α1), . . . , f(αn)) | f ∈ Fq[x],deg f < k} .

When n = q, the resulting code is called a full-length RS code.

Thus, a codeword of an [n, k] RS code is the evaluation vector of some polynomial of degree less than
k at n distinct points, i.e., the codeword that corresponds to a polynomial f of degree less than k is
(f(α1), . . . , f(αn)). Assuming that the nth node has failed, i.e., the value of f(αn) is lost, the question boils
down to how much information is needed from the remaining nodes storing f(α1), . . . , f(αn−1), in order to
determine f(αn). It is clear that any k values of f(αi) suffice to recover the polynomial f , and in particular
recover f(αn). In the terminology of a repair scheme, this corresponds to d = k helper nodes that transmit
their entire symbol. This type of repair scheme is termed as the trivial repair, although it also attains the
cut-set bound (2.1) with equality.

Hence, the more exciting and challenging question is whether it is possible to recover the polynomial value
at a specific location without recovering the original polynomial, thereby possibly requiring less information
from the d helper nodes for d > k. It turns out that to determine f(αn), one needs much less information
than the amount needed in the trivial scheme that employs polynomial interpolation. Indeed, Shanmugam,
Papailiopoulos, Dimakis, and Caire [SPDC14] developed a general framework for repairing scalar MDS codes
and, in particular, RS codes, then they exemplified their framework by showing that there are repair schemes
for RS codes that are more efficient than the trivial scheme.

Then, Guruswami and Wootters [GW17b] generalized the framework of [SPDC14] and gave a complete
characterization of linear repair schemes of scalar MDS codes. They also provided few examples of RS codes
with linear repair schemes that outperform the trivial repair scheme. A more recent work by Tamo, Ye, and
Barg [TYB17] used the framework of [GW17b] and showed that for every k < d < n there are RS codes that
are indeed [n, k, d] MSR codes. The caveat in their work is the large field extension degree (subpacketization)
which is L = exp((1 + o(1))n log(n)).

Unfortunately, in [TYB17], the authors provided an almost matching lower bound of L = exp(Ω(k log(k)))
on the degree of the field extension that is required in order for an RS code (and in general any scalar MDS
code) to be an MSR code with a linear repair scheme. The results of [GW17b] were extended even further
in [DDKM18] and [MBW18], to consider multiple node failures. As a final remark, the strong lower bound
on the field size for linear repair schemes, given in [TYB17], gives a clear motivation for studying nonlinear
repair schemes.

2.1.4 Linear and nonlinear repair schemes

As already discussed, any code, either scalar or array, can be viewed as an array code over some prime field
Fp. Therefore, consider an [n, k] array code C over Fp and subpacketization L. We say that a repair scheme
is linear if each computed function µ by a helper node is linear over the prime field Fp. Equivalently, if for
any α, β ∈ Fp and x, y ∈ FL

p

µ(αx+ βy) = αµ(x) + βµ(y).

All the existing efficient repair schemes of linear codes rely on the fact that if they are viewed as array
codes, their subpacketization level L is extremely large. On the other hand, it is known that this is indeed

13

needed if one employs linear repair schemes [AG19, TYB17]. Hence we are motivated to study nonlinear
repair schemes. Furthermore, Guruswami and Wootters asked the following in [GW17b]: “How much better
can one do with nonlinear repair schemes?”

A good starting point for constructing nonlinear repair schemes is to consider array codes with subpack-
etization L = 1. For RS codes, this means to be defined over a prime field. In such a case, any nontrivial
repair scheme must be nonlinear. Indeed, any nonzero linear function µ : Fp → Fp must be bijective, which
in terms of the transmitted information means that the helper node sends its entire symbol, and note that
this corresponds to the trivial repair scheme. We conclude that any linear repair scheme is equivalent to the
trivial repair scheme for RS codes over a prime field. Thus, any improvement over the trivial repair scheme
must be nonlinear, and it automatically implies that it outperforms all linear repair schemes.

2.1.5 Our contribution

In this chapter, we make the first step towards understanding nonlinear repair schemes’ power for linear
codes. In particular, we present a nonlinear repair scheme of RS codes that outperforms all the linear ones.
For all we know, this is the first nonlinear repair scheme.

In the real-world scenario of this problem, large files are stored across a relatively small number of nodes.
Therefore, each node stores a large chunk of the file. Hence, in this work, we think of k, d, and n as small
constants, while the alphabet size p (which corresponds to the data stored by each node) is large and tends
to infinity. We note that this point of view is different than the usual point of view in coding theory. In
light of that, we say that a code symbol admits an asymptotically optimal repair (bandwidth) if the repair
bandwidth tends to the cut-set bound (2.1) as p tends to infinity, and n is fixed.

Below, we summarize the main contributions of this chapter, where d is the number of helper nodes.

1. For any 2 < d < n, we show that 1− o(1) fraction of all the [n, 2]p RS codes are asymptotically [n, 2, d]
MSR codes, where the term o(1) tends to zero as p tends to infinity. Namely, any code symbol admits
an asymptotically optimal repair by any set of d helper nodes.

2. We show that the phenomenon of RS codes with nonlinear repair schemes that outperform all the
linear ones also holds over infinitely many field extensions.

3. For any k < d ≤ n/2 we present an explicit construction of an [n, k]p RS code such that its symbols
can be partitioned into two sets of equal size, such that each symbol admits an asymptotically optimal
repair using any d helper nodes from the other set.

4. We show that any full-length RS code over the prime field Fp exhibits some efficient repair properties.
Specifically, for any k < d and large enough p, we show that each node has Ω(p) distinct sets of helper
nodes of size d that can repair it with asymptotically optimal repair bandwidth.

5. Unlike the problem of repairing RS codes over field extensions, we show that one can not achieve the
cut-set bound with equality, and over prime fields, one can obtain a tighter lower bound on the total
incurred bandwidth. Concretely, we improve the cut-set bound (in the symmetric case, details below)
by showing that every node must transmit another additive factor of Ω(log(k)/(d− k + 1)) bits.

Recall that any linear repair scheme of RS codes over prime fields is equivalent to the trivial repair. Therefore,
our nonlinear repair schemes for RS codes over prime fields outperform all the linear ones.

2.1.6 Organization of this chapter

In Section 2.2, we present a general framework for repairing a failed node and obtain a necessary condition
for a successful repair. In Section 2.3, we show the existence of [n, 2]p RS codes, which are asymptotically
MSR codes, then extend this result to field extensions. In Section 2.4, we turn to explicit constructions of
RS codes with efficient repair schemes. We complement the achievability results (code constructions) given
in the previous section by improving the cut-set bound in Section 2.5. In ??, we discuss the implications of

14

our results on repairing RS codes for leakage-resilient of Shamir’s secret sharing scheme over prime fields.
We conclude in Section 2.6 with open questions.

2.2 A General framework for node repair

Throughout, let n, k, and d be the number of nodes (code’s length), the RS code dimension, and the number
of helper nodes, respectively. Also, let p be a prime number, where we think of n, k, and d as constants, and
p tends to infinity.

This section describes a general repair framework for repairing a single failed node that applies to any
repair scheme. For simplicity, we will assume that the last node, i.e., the nth node is the failed node that
needs to be repaired using all the remaining n − 1 other nodes, i.e., d = n − 1. To simplify the notation
even further, we assume symmetry between the nodes in terms of the amount of information transmitted,
i.e., each helper node transmits the same amount of information. We note that the framework can be easily
generalized to the most general case, i.e., an arbitrary failed node, an arbitrary number of helper nodes
k ≤ d ≤ n− 1, and the non-symmetric case. Lastly, we would like to emphasize that the model assumes no
errors; namely, the received information from the helper nodes is error-free. One can generalize this model
by removing this assumption, as it was done in [RSRK12, SRV15].

We begin with some needed notations. For positive integers a < b let [a, b] = {a, a + 1, . . . , b} and
[a] = {1, 2, . . . , a}. Throughout, let p be a prime number and for a positive integer m let Fpm be the
finite field of size pm. An arithmetic progression in some field F of length N and a step s ∈ F is a set
of the form {a, a + s, . . . , a + (N − 1)s} for some a ∈ F. For two sets A,B ⊆ Fp, define their sumset as
A+B := {a+ b | a ∈ A, b ∈ B}. For an element γ ∈ Fp we denote by γ ·A := {γ · a : a ∈ A} all the possible
products of γ with elements in A.

We are now ready to present the general repair framework. Let C ⊆ Fn
p be a linear code over Fp. A repair

scheme for its nth symbol is a set of n− 1 functions µi : Fp → [s] and a function G : [s]n−1 → Fp such that
for any codeword (c1, . . . , cn) ∈ C

G(µ1(c1), . . . , µn−1(cn−1)) = cn. (2.2)

Upon a failure of the nth symbol, the ith symbol, which holds the symbol ci computes µi(ci) and transmits it
over the network using ⌈log s⌉ bits. Upon receiving the n−1 messages µi(ci), the repair scheme is completed
by calculating the nth symbol using (2.2). The bandwidth of the repair scheme, which is the total number
of bits transmitted across the network during the repair, equals (n− 1) ⌈log(s)⌉ since every node transmits
⌈log(s)⌉ bits.

One can put any repair scheme under this framework, and the difficulty of the problem stems from finding
the functions µi that are informative enough, i.e., they provide enough information about ci, from which
collectively it is possible to compute the symbol cn. However, they should not be too informative, in the
sense that the size of the image, s, should be small to minimize the total incurred bandwidth. We have the
following simple observation.

Observation 2.2.1. A set of n − 1 functions µi : Fp → [s] can be extended to a repair scheme, i.e., there
exists a function G that satisfies (2.2) if and only if for any two codewords c, c′ ∈ C, such that µi(ci) = µi(c

′
i)

for all i ∈ [n− 1] it holds that cn = c′n.

Proof. Let µi for i ∈ [n − 1] be the n − 1 functions as above, and define the function G as follows. For a
codeword c ∈ C define the value of G as in (2.2), i.e., G(µ1(c1), . . . , µn−1(cn−1)) = cn. For all other points of
[s]n−1 define the value of G arbitrarily. By the property the functions µi satisfy, it is clear that the function
G is well defined, and together they form a valid repair scheme. The other direction is trivial.

Every function µi defines a partition {µ−1
i (a) : a ∈ [s]} of Fp. Vice versa, any partition of Fp to s sets

defines a function whose value at the point a ∈ Fp is the index of the set that contains it. Hence, in the
sequel, we will define the functions µi by partitions of Fp to s sets. This chapter’s main contribution is
identifying the ‘right’ functions µi, equivalently, the ‘right’ partitions of Fp that define the µi’s. As it turns

15

out, arithmetic progressions are the key for constructing the needed partitions that give rise to an efficient
nonlinear repair schemes for codes over prime fields, as explained next.

Fix an integer 1 ≤ t ≤ p, set s = ⌈p/t⌉ and define A0, . . . , As−1 to be the partition of Fp into the following
s arithmetic progressions of length t and step 1

Aj =

{
{jt, jt+ 1, . . . , jt+ t− 1} 0 ≤ j ≤ s− 2

{(s− 1)t, . . . , p− 1} j = s− 1.
(2.3)

For a nonzero γ ∈ Fp, it is easy to verify that γ · A0, . . . , γ · As−1 is also a partition of Fp into arithmetic
progressions of length t and step γ. Each function µi, i ∈ [n − 1] of the repair scheme will be defined by
a partition γi · A0, . . . , γi · As−1 for an appropriate selection of γi. Notice that the γi’s will be distinct for
distinct i’s and therefore also the functions µi will be distinct for distinct i’s. Phrasing Observation 2.2.1 in
the language of partitions gives the following. The partitions defined by the γi’s extend to a repair scheme
if (and only if) for any two codewords c, c′ ∈ C that belong to the same set in all of the n − 1 different
partitions, i.e., ci, c

′
i ∈ γi ·Aji for all i ∈ [n− 1], it holds that c, c′ agree on their nth symbol, i.e., cn = c′n. In

such a case, we say that the γi’s define a valid repair scheme, and in the following proposition, we provide a
relatively simple sufficient but instrumental condition for it.

Proposition 2.2.2. Let C ⊆ Fn
p be a linear code, t < p be an integer, and γ1, . . . , γn−1 be nonzero elements

of Fp. If for any c ∈ C with ci ∈ γi · [−t, t] for all 1 ≤ i ≤ n− 1, it holds that cn = 0, then, the γi’s define a
valid repair scheme for the nth node with a total bandwidth of (n− 1) log (⌈p/t⌉) bits.

Before proving the proposition, we remark that the actual number of bits each node sends is ⌈log(⌈p/t⌉)⌉
and thus the total bandwidth is (n−1) ⌈log(⌈p/t⌉)⌉ ≤ (n−1) log(⌈p/t⌉)+n−1. Since we think of n as being
a small constant compared to p, the additive factor of (n − 1) is negligible when log(⌈p/t⌉) = Ω(log(p)),
which is the case throughout the chapter. Thus, for ease of notation we will omit the ceiling in the sequel,
and assume that each node transmits log (⌈p/t⌉) bits.

Proof. Let s = ⌈p/t⌉ and define the sets Aj , 0 ≤ j ≤ s−1 as in (2.3). For each i ∈ [n−1], define the function
µi according to the partition γi ·A0, . . . , γi ·As−1. Namely, µi(a) = j if and only if a ∈ γi ·Aj . Let c, c

′ ∈ C
be two codewords that agree on the n− 1 values µi(c) = µi(c

′), i ∈ [n− 1]. Then, c− c′ is a codeword such
that its ith symbol belongs to the set γi · [−t, t] for i ∈ [n − 1]. Therefore, its nth symbol is equal to zero
which implies that cn = c′n, and by Observation 2.2.1 the γi’s define a valid repair scheme. The claim about
the bandwidth follows since each partition consists exactly s sets.

Remark 2.2.3. We emphasize here that by using arithmetic progressions we managed to have small sets
in Proposition 2.2.2. Indeed, note that in the proof, each coordinate of c − c′ belongs to a set of the form
A − A and this difference is small in the case that A is an arithmetic progression. Informally speaking, if
the partitions were random and each set A in every partition is random, then |A − A| ≈ |A|2. For a more
formal description about our choice to use arithmetic progression, see the discussion after Theorem 2.5.2 in
Section 2.5

Since our primary focus is RS codes, the following proposition is a specialization of Proposition 2.2.2 to
this case. In fact, we also slightly generalize it to address the case of arbitrary node repair and an arbitrary
set of helper nodes.

Proposition 2.2.4. Consider an [n, k]p RS code defined by the evaluation points α1, . . . , αn. Let ℓ ∈ [n] be
the failed node and D ⊂ [n]\{ℓ} be a set of d helper nodes for k ≤ d ≤ n − 1. Furthermore, let t < p be an
integer and γi, i ∈ D be nonzero elements of Fp. If for any polynomial f(x) ∈ Fp[x] of degree less than k
with f(αi) ∈ γi · [−t, t] for all i ∈ D, it holds that f(αℓ) = 0, then, the γi’s define a valid repair scheme for
the ℓth node with a total bandwidth of d log (⌈p/t⌉) bits.

Proof. The result is obtained by applying Proposition 2.2.2 to the punctured [d+ 1, k]p RS code defined by
the evaluation points {αi | i ∈ D ∪ {ℓ}}.

16

All the efficient repair schemes given in the chapter will follow by showing that there is a choice of
evaluation points α1, . . . , αn ∈ Fp such that any node (and not only the last node) can be efficiently repaired
by invoking Proposition 2.2.4 with carefully designed partitions (γi’s).

We say that a polynomial f ∈ Fp[x] passes through (α,A) for α ∈ Fp and a subset A ⊆ Fp if f(α) ∈ A.
Figure 2.1 illustrates a valid repair scheme (defined by the γi’s) of the nth node of a RS code, that satisfies
the condition of Proposition 2.2.4. Namely, any two polynomials f(x), g(x) that pass through the same set
in each of the n− 1 partitions, attain the same value at αn, i.e., f(αn) = g(αn).

(α1, γ1 ·Aj1)

(α2, γ2 ·Aj2)

(αn−1, γn−1 ·Ajn−1
)

f(αn) = g(αn)

g(x)

f(x)

Figure 2.1: A valid repair of the nth node of an [n, k] RS code, that satisfies the condition of Proposition
2.2.4. The two polynomials f(x) and g(x) of degree less than k pass through (αi, γi ·Aji) for every i ∈ [n−1]
and hence f(αn) = g(αn).

2.3 Asymptotically MSR RS codes over Fp

In this section, we show the existence of RS codes over prime fields that have efficient repair schemes, but
first we begin with the following two definitions that will be used in the sequel.

Definition 2.3.1. A code symbol of an [n, k] (scalar) MDS code over a field F is said to admit an asymp-
totically optimal repair (bandwidth) if it can be repaired by some set of d helper nodes (for k ≤ d < n) and
bandwidth at most

log(|F|)
(

d

d− k + 1
+ o(1)

)
(2.4)

bits, where the term o(1) tends to zero as the field size |F| tends to infinity.

Definition 2.3.2. An [n, k] (scalar) MDS code is said to be asymptotically [n, k, d] MSR if any of its code
symbols admits asymptotically optimal repair, i.e., satisfy (2.4), by any set of d helper nodes.

We proceed to show that over large enough prime fields, there exist [n, 2] RS codes that are asymptotically
[n, 2, d] MSR codes for every 2 < d < n. Then, we proceed to generalize the result to RS over field extensions.
We would like to stress that the constructions and those presented in the following sections are asymptotically
optimal in the strong sense. Namely, the actual bandwidth differs from the cut-set bound by an additive
constant that depends only on the parameters n, k, d and not on the alphabet size. Furthermore, the
constructions’ repair schemes outperform all the linear repair schemes, which is a phenomenon that was not
known to exist before. In particular, for prime fields, the only known repair scheme is the trivial scheme

17

(which is a linear scheme). Therefore, by outperforming the trivial repair over prime fields, we obtain the
first known example of a nontrivial repair over prime fields.

2.3.1 Existence of asymptotically [n, 2, d] MSR RS codes over Fp

In this section we show by a counting (encoding) argument the existence of an asymptotically [n, 2, d]p MSR
RS code for a large enough prime p and any 2 ≤ d ≤ n − 1. In fact, we show a stronger result, that is,
for any ε > 0 and a large enough prime p, a fraction of 1 − ε of all the RS codes satisfy this property. In
particular, for such a code every code symbol i ∈ [n] can be repaired by any d helper nodes, where each
helper node transmits (1/(d− 1)) log(p) +On,ε(1) bits, which is roughly a 1/(d− 1) fraction of the amount
of information it holds.

Theorem 2.3.3. Let ε > 0 and 2 ≤ d < n, then for a large enough prime p, a fraction of 1 − ε of all the
[n, 2]p RS codes are asymptotically [n, 2, d] MSR codes with repair bandwidth d

d−1 log(p) +On,ε(1).

Proof. Let t < p be an integer to be determined later, and let α1, . . . , αn be the evaluation set of the [n, 2]p
RS code. We would like to show that any code symbol admits an asymptotically optimal repair by applying
Proposition 2.2.4. Assume that the ℓth symbol has failed and that the there exists a set D ⊆ [n]\{ℓ}, |D| = d
that does not satisfy the condition in Proposition 2.2.4 with γi := αi−αℓ , for i ∈ D. Therefore, there exists
a polynomial f(x) of degree at most one that passes through (αi, γi · [−t, t]) for i ∈ D and f(αℓ) ̸= 0. Let
j = min{D} and define the polynomial

g(x) := f(x)− f(αj)

γj
(x− αℓ).

Notice that g(αj) = 0 and g(αℓ) = f(αℓ) ̸= 0, hence g(x) is of the form g(x) = m(x− αj) for some m ̸= 0.
Also, for i ∈ D\{j}

0 ̸= g(αi) = f(αi)−
f(αj)

γj
γi ∈ γi · [−2t, 2t], (2.5)

since f(αi),
f(αj)
γj

γi ∈ γi · [−t, t]. Here, the fact that γi · [−t, t] is an arithmetic progression plays a crucial

rule, since it implies that the size of the set γi · [−t, t] − γi · [−t, t] is small. We conclude that one can find
a linear polynomial g(x) with the above properties for any such evaluation set. Next, we give an encoding
for the (bad) evaluation sets. We note that the term “encoding” is used here for representing our counting
argument which counts the number of bad evaluation sets by determining the degrees of freedom in their
description.

Encoding:

1. Encode the index of the failed symbol ℓ, and the set D. There are n
(
n−1
d

)
options for this.

2. Encode the evaluation points αi, i /∈ D ∪ {ℓ}. There are pn−d−1 options for this.

3. Encode the evaluation points αj , αℓ and αk, where k is the second smallest element of D. There are
at most p3 options for this.

4. Encode the value g(αk). By (2.5) there are at most 4t options for this.

5. For each i ∈ D\{j, k} encode the value g(αi)/γi which is in the set [−2t, 2t]\{0} by (2.5). Again, there
at most (4t)d−2 for this.

Next, we show that given the encoding, one can recover the original evaluation set. In other words, the
encoding mapping is injective.

Decoding: Given Steps (1)-(2) one can recover the index of the failed symbol, the set D and the
evaluation points αi, i /∈ D ∪ {ℓ}. Given Steps (3)-(4) and the fact that g(x) is a nonzero polynomial of

18

degree at most one that vanishes at αj , we can find the value of m and hence recover the polynomial
g(x) = m(x − αj). Next, it remains to recover the points αi, for i ∈ D\{j, k}. Given the value of αℓ and
g(αi)/γi obtained in Steps (4) and (5), respectively, one can construct the non-degenerate equation

g(αi)− (αi − αℓ) ·
g(αi)

γi
= 0,

in the variable αi. Since it is a linear equation, the value of αi can be uniquely determined.
Hence, the number of such (bad) evaluation sets, i.e., that do not satisfy the condition in Proposition

2.2.4 for repairing any of the n symbols is at most the total number of possible encodings, which is at most
n
(
n−1
d

)
pn−d+2(4t)d−1 options. Set

t =

⌈
εp

d−2
d−1

10n
d+1
d−1

⌉
,

and then n
(
n−1
d

)
pn−d+2(4t)d−1 < ε

2 · p
n. On the other hand, the number of possibilities to choose the αi’s is

pn(1−o(1)) where the term o(1) tends to zero as p tends to infinity. This implies that at least pn(1− ε
2−o(1))

of the evaluation sets are not bad. Hence, for large enough p a fraction of at least 1 − ε of the possible RS
codes satisfy the condition in Proposition 2.2.4. Lastly, for such an RS code, the total incurred bandwidth
during the repair of any symbol is

d · log
(⌈p

t

⌉)
≤ d · log

(
p

1
d−1 · 10ε−1 · n

d+1
d−1

)
=

d

d− 1
log(p) +On,ε(1),

bits1, as needed.

2.3.2 Outperforming linear repair schemes over field extensions

In Section 2.3.1 we obtained the first existence result of an RS code that can be asymptotically repaired
over a prime field. On the other hand, any linear repair scheme over a prime field is the trivial repair, i.e.,
repairing with any k helper nodes that transmit their entire symbol, where k is the dimension of the code.
Indeed, prime fields have no proper subfields. The only option for a helper node is to transmit its entire
symbol. Therefore, the previous section’s result can be viewed as the first example wherein a nonlinear repair
scheme outperforms all linear ones.

A natural question to consider is whether this phenomenon could be found over field extensions or it
is solely a property of prime fields. In this section, we show by relying on the result of Section 2.3.1 and
a simple extension of repair schemes over some field to repair schemes over its field extensions, that this
phenomenon also occurs over field extensions. More precisely, we exhibit the existence of RS codes over Fpm

for infinitely many primes p and integers m that have a nonlinear repair scheme that outperforms (in terms
of the total incurred bandwidth) any linear repair scheme. The outperformance of the nonlinear scheme over
linear ones follows from the fact that the latter requires the transmission of Fp-symobls, whereas there is no
such constraint on the former.

The following proposition shows that an RS code over a field F and evaluation points in a subfield of
F can be repaired by invoking any repair scheme of the RS code over the subfield and the same evaluation
set. In other words, a repair scheme for an [n, k]p RS code can be translated to a repair scheme for an
[n, k]pm RS code. We note that a similar result was already given in [LWJ19, Theorem 1], but for the sake
of completeness, we state and prove it here again.

Proposition 2.3.4. Let α1, . . . , αn ∈ Fp be the evaluation set of an [n, k]p RS code, and suppose that there
exists a repair scheme for node i with a set D ⊂ [n] of d helper nodes and bandwidth of b bits. Then, for every
positive integer m the [n, k]pm RS code with the same evaluation set α1, . . . , αn ∈ Fp has a repair scheme for
node i with the same set D ⊂ [n] of d helper nodes and bandwidth of b ·m bits.

1As discussed above, the actual bandwidth is d ·
⌈
log

(⌈ p
t

⌉)⌉
, but the outer ceiling adds at most d bits, which are absorbed

in the On,ε(1) term, as d < n. Hence, it does not affect the final bandwidth.

19

Proof. Let β0, . . . , βm−1 ∈ Fpm be a basis of Fpm over Fp. It can be readily verified that any polynomial
f(x) ∈ Fpm [x] can be written as

f(x) =

m−1∑
j=0

fj(x)βj , where fj(x) ∈ Fp[x].

Then, the problem of repairing the value f(αi) for a polynomial f(x) ∈ Fpm [x] of degree less than k boils
down to m independent repairs of fj(αi) for j = 0 . . . ,m−1 over Fp. By invoking m times the repair scheme
for αj , j = 0, . . . ,m− 1, we get that the total incurred bandwidth is b ·m, as needed.

Proposition 2.3.5. There are infinitely many primes p and positive integers m, and 2 ≤ d < n for which
there exist an [n, 2]pm RS code with a nonlinear repair scheme with d helper nodes that outperforms any
linear repair scheme.

Proof. Fix an ε > 0, and consider the [n, 2]p RS code with evaluation set α1, . . . , αn, given in Theorem 2.3.3.
Let m be a positive integer not divisible by d−1, and consider the [n, 2]pm RS code with the same evaluation
set. By Proposition 2.3.4 there exists a nonlinear repair scheme for this code with bandwidth at most

m

(
d

d− 1
log(p) +On,ε(1)

)
.

On the other hand, any linear repair scheme over Fp requires the transmission of Fp-symbols, then by the
cut-set bound (2.1) the number of Fp-symbols transmitted is at least ⌈dm/(d− 1)⌉. Since d − 1 ∤ m then
any linear repair scheme transmits at least(⌈

dm

d− 1

⌉
− dm

d− 1

)
log(p)−Om,n,ε(1), (2.6)

more bits than the nonlinear repair scheme, as needed.

Although the improvement of the nonlinear repair scheme over linear schemes is small and might seem
very negligible, the difference (2.6) can be arbitrarily large as we increase the alphabet size p. The purpose
of this result is to exemplify that nonlinear repair schemes can, in fact, outperform linear schemes even
over field extensions and not only over prime fields. We believe that it is possible to exhibit even a more
significant gap between the two.

2.4 Explicit constructions of RS codes

In the previous section, we showed the existence of [n, 2]p RS codes that are asymptotically MSR. In this
section, we turn our focus to explicit constructions of RS codes that have efficient repair schemes. We
present several such constructions by explicitly presenting the evaluation points αi and the γi’s that define
the partitions (functions) computed by the helper nodes, as detailed below.

We begin with a toy example of an asymptotically [4, 2, 3]p MSR RS code. The result will follow by
showing that the explicit γi’s and the evaluation points αi satisfy the condition of Proposition 2.2.4. Then,
we continue to present the main construction of this section. Building on the ideas presented in the toy
example, we explicitly construct for all k < d ≤ n/2 an [n, k]p RS code such that every node admits
an asymptotically optimal repair with many d-sets of nodes as helper nodes, although not all of them.
Therefore, the code falls short of being asymptotically MSR. We conclude the section with two more explicit
constructions of full-length and folded RS codes that follow directly from this section’s main construction.

20

2.4.1 A toy example

Assume that we would like to construct a [4, 2]p RS code with asymptotically optimal repair for the 4th symbol
by invoking Proposition 2.2.4. Then, we need to choose distinct points α1, . . . , α4 ∈ Fp and γ1, . . . , γ3 ∈ Fp for
which Proposition 2.2.4 holds for t = Ω(

√
p). Indeed, for such a t, each helper nodes transmits 1

2 log(p)+O(1)
bits.

Let p be a large enough prime, and let γi := αi − α4 for i = 1, 2, 3, where

α1 = 0, α2 = −1, α3 =
p− 1

2
, α4 = −(2t+ 1) ,

and t =
⌊√

p/5
⌋
. Then, by Proposition 2.2.4 the repair of the 4th symbol is possible if for any polynomial

f ∈ Fp[x] of degree at most one, that satisfies f(αi) ∈ γi · [−t, t] for i = 1, 2, 3, it holds that f(α4) = 0. Let
f be such a polynomial, i.e., deg(f) ≤ 1 and f(αi) ∈ γi · [−t, t] for i = 1, 2, 3, write f(α1) = m · γ1 for some

m ∈ [−t, t], and consider the polynomial f̂ := m(x−α4). We would like to show that by the above selection

of the αi’s, f is equal to f̂ and in particular f(α4) = f̂(α4) = 0, as needed. Note that f(αi), f̂(αi) ∈ γi · [−t, t]

for i = 1, 2, 3 and f(α1) = f̂(α1), then their difference g := f − f̂ satisfies, deg(g) ≤ 1, g(α1) = 0. Therefore,
g(x) = s(x−α1) for some s ∈ Fp, and g(αi) ∈ γi · [−2t, 2t] for i = 2, 3. To conclude, we will show that s = 0
and therefore g is the zero polynomial.

Towards this end, notice first that s = g(αi)
αi−α1

∈ γi

αi−α1
· [−2t, 2t], for i = 2, 3, therefore

s ∈
⋂

i=2,3

γi
αi − α1

· [−2t, 2t]. (2.7)

Next, assume that we take a realization of Fp as all the integers whose absolute value is less than p/2, i.e.,
Fp = {0,±1,±2, . . . ,±p−1

2 }, then

γ2
α2 − α1

= −2t and
γ3

α3 − α1
=

α3 − α4

α3 − α1
= 1− α4

α3
= 1− 2(2t+ 1) = −4t− 1.

Therefore, the following products (over Z) satisfy∣∣∣∣2t · γ2
α2 − α1

∣∣∣∣ , ∣∣∣∣2t · γ3
α3 − α1

∣∣∣∣ < p

2
.

This implies that there is no wrap around in the calculation of the sets γi/(αi − α1) · [−2t, 2t] in (2.7) when
viewed as subsets of Fp, and they are equal to the same sets of products when calculated over Z.

By (2.7), s is divisible by −4t− 1 and by 2t, and thus, s is divisible by their lcm. Since −4t− 1 and −2t
are coprime, then

lcm(−4t− 1,−2t) = 2t(4t+ 1) > 2t ·
∣∣∣∣ γ2
α2 − α1

∣∣∣∣ = 4t2. (2.8)

Now assume to the contrary that s ̸= 0, then by (2.8), s is a nonzero integer whose absolute value is greater
than 4t2. We get that the absolute value of s is greater than the maximal absolute value of any element in
the set γ2

α2−α1
· [−2t, 2t], and we arrive at a contradiction (since (2.7) does not hold). Therefore, the repair

of α4 is possible, where each helper nodes transmits at most

log
(⌈p

t

⌉)
≤ 1

2
log(p) +O(1),

bits, as needed.
In section 2.7.2 we show that by applying again Proposition 2.2.4, the other evaluation points admit an

asymptotically optimal repair with d = 3. Therefore this is an asymptotically [4, 2, 3] MSR code.

21

2.4.2 An RS code construction with k < d ≤ n/2

This section presents an explicit construction of RS codes over Fp with efficient repair, as described next.
Let d, k, and n be arbitrary positive integers such that k < d ≤ n/2. We construct an [n, k]p RS code with
the following repair properties. The set of n nodes can be partitioned into equally sized sets, of size n/2 (for
simplicity, assume that n is even, for odd n the size of the sets differ by one), such that any failed node can
be optimally repaired by any subset of d helper nodes from the other set, i.e., the set that does not contain
the failed node. Clearly, this constraint provides for each failed node

(
n/2
d

)
possible helper sets; however,

the construction falls short in satisfying the definition of an asymptotically MSR code since not any set of d
nodes can serve as a set of helper nodes. Another caveat of this construction that we should mention is its
low rate, as k/n ≤ 1/2. It is an interesting open question whether it is possible to modify this construction
to a code without these constraints.

Before stating and proving the main result of this section, we state a lemma that provides a lower bound
on the least common multiple of several integers.

Lemma 2.4.1. Let a1, . . . , as be positive integers, then

lcm(a1, . . . , as) ≥
∏s

i=1 ai∏
1≤i<j≤s gcd(ai, aj)

.

The proof of the Lemma 2.4.1 is given in the Appendix (Section 2.7.1). Next, we present the explicit
construction of the RS code with the claimed properties.

Construction 2.4.2. Let k, d, n be integers such that k < d ≤ n/2 and n is even. Let r := ⌊p
1

d−k+1 ⌋, where
p is a large enough prime, and define the [n, k]p RS with n evaluation points αi where

αi =

{
i i ∈ [n/2]

r + i− n
2 i ∈ [n/2 + 1, n].

The following theorem shows that the constructed RS code admits an asymptotically optimal repair for
any of its nodes (symbols).

Theorem 2.4.3. The [n, k]p RS code given in Construction 2.4.2 admits a partition of its nodes to two sets
[n/2] and [n/2 + 1, n] such that any node from one set can be repaired by any set of d helper nodes from the
other set, with total bandwidth of d/(d− k + 1) log(p) +On,k,d(1) bits.

Proof. The result will follow by showing that for carefully designed γi’s, Proposition 2.2.4 holds true. Let
δ ∈ [r+1, r+n/2] be the evaluation point of the failed node and note that the proof for the other evaluation
points is almost identical and thus is omitted. Let α1, . . . , αd ∈ [n/2] be a set of d distinct helper nodes, and
define the γi’s as

γi =

(−1)k(αi − δ)
∏d

j=1
j ̸=i

(αj − αi) 1 ≤ i ≤ k − 1

(αi − δ)
∏k−1

j=1 (αi − αj) k ≤ i ≤ d.

Consider a polynomial f(x) of degree less than k such that f(αj) := βj ∈ γj · T for all 1 ≤ j ≤ d, where
T = [−t, t] and t is a positive integer to be determined later. We will show that in such a case f(δ) = 0 and
hence Proposition 2.2.4 holds. Let h(x) be the polynomial of degree less than k defined by the k constraints,
h(δ) = 0 and h(αi) = f(αi) = βi for all 1 ≤ i ≤ k− 1. By the Lagrange interpolation formula one can easily
verify that h(x) takes the following form

h(x) =

k−1∑
i=1

x− δ

αi − δ

k−1∏
j=1
j ̸=i

x− αj

αi − αj
βi.

22

Next, define g(x) := f(x)−h(x) and note that since g(x) is a polynomial of degree less than k that vanishes
at αj for all 1 ≤ j ≤ k − 1, it takes the following form

g(x) = a

k−1∏
j=1

(x− αj), (2.9)

for some a ∈ Fp. We wish to show that a = 0 which implies that g ≡ 0 and f(δ) = 0, as needed. For
m ∈ [k, d]

g(αm) = f(αm)− h(αm) = βm −
k−1∑
i=1

αm − δ

αi − δ

k−1∏
j=1
j ̸=i

αm − αj

αi − αj
βi .

Combined with (2.9) we have

a =
βm∏k−1

j=1 (αm − αj)
−

k−1∑
i=1

αm − δ

αi − δ

1

αm − αi

k−1∏
j=1
j ̸=i

1

αi − αj
βi .

Since βj ∈ γj · T for j = 1, . . . , d then

a ∈ (αm − δ) · T − (αm − δ)

k−1∑
i=1

d∏
j=k
j ̸=m

(αj − αi) · T ,

i.e., a belongs to a set which is a sum of k sets. Equivalently we can write

a ∈ (αm − δ) ·

T −
k−1∑
i=1

d∏
j=k
j ̸=m

(αj − αi) · T

 . (2.10)

Consider a realization of Fp as all the integers whose absolute value is less than p/2, i.e., Fp =
{0,±1,±2, . . . ,±p−1

2 }, and consider the set in (2.10) as a subset of Z, where all the multiplications and addi-
tions are done over Z. We claim that the absolute value of any of its elements is at most |αm− δ|tk(n/2)d−k.
Indeed, αj ∈ [n/2] for each j = 1, . . . , d and therefore |aj − ai| ≤ n/2. We conclude that the set in (2.10) is
contained in the set

(am − δ) · [−Ct,Ct],

where C = Cn,k,d is a positive constant that depends only on n, k and d. Let t = ξp1−
1

d−k+1 , where ξ is a
small positive constant which will be determined later. Next, if ξ is small enough, then for any m = k, . . . , d
the absolute value of an element of the set (am−δ) · [−Ct,Ct] is less than p/2, and therefore there is no wrap
around when it is viewed as an element of Fp. To conclude, by (2.10) the integer a is divisible by αm − δ for
m = k, . . . , d, hence it is divisible by their least common multiple. By Lemma 2.4.1, and the fact that for
distinct αi, αj ∈ [n/2], it holds that gcd(αi − δ, αj − δ) = gcd(αi − δ, αj − αi) ≤ n/2, then

lcm(αk − δ, . . . , αd − δ) ≥ |(αk − δ) · · · (αd − δ)|(
n
2

)(d−k+1
2)

= Ω(δd−k+1) = Ω(rd−k+1) = Ω(p),

since k, n and d are constants with respect to p. Thus, there exists a positive constant ε = εn,k,d < 1
such that |a| > εp or a = 0. On the other hand, recall that a ∈ (αm − δ) · [−Ct,Ct] and thus, for small
enough ξ we get that |a| < εp. Thus, it must be that a = 0, which implies that g ≡ 0 and in particular
g(δ) = f(δ) = 0. Therefore, by Proposition 2.2.4, it is possible to repair the failed symbol node δ, as needed.
The total incurred bandwidth by the scheme is d · log(p/t) = d log(p1/(d−k+1)) + d log(1/ξ) and the results
follows immediately since ξ depends only on n, k, and d.

23

Next, we shall make use of Construction 2.4.2 to construct a full-length RS code over Fp that has good
repair properties. Namely, we show that every code symbol has at least Ω(p) distinct helper sets that enable
an asymptotically optimal repair.

Theorem 2.4.4. Let d > k be positive integers. Let p be a large enough prime and consider the full length
[p, k]p RS code, Then, every failed code symbol has Ω(p) distinct sets of helper nodes of size d that can repair
it with bandwidth at most d/(d− k + 1) log(p) +Ok,d(1).

Proof. Let G = {ax + b : a, b ∈ Fp, a ̸= 0} be the affine general linear group acting on Fp. It is well-known
that G is sharply 2-transitive, and therefore the subgroup Gδ = {ax+ b ∈ G : aδ + b = δ} that stabilizes a
point δ ∈ Fp is sharply transitive on Fp\{δ}.

Let δ ∈ Fp be the failed node. Let h ∈ G be an affine transformation such that h(1) = δ and set

A := h([r+1, r+d]) = {h(a) : a ∈ [r+1, r+d]}, where r := ⌊p
1

d−k+1 ⌋. We claim that GA
δ = {g(A) : g ∈ Gδ},

the orbit of the set A under the action of Gδ is of size Ω(p), and each set in the orbit forms a set of helper
nodes for repairing the failed node δ. Indeed, it is well-known that the size of the orbit satisfies

|GA
δ | =

|Gδ|
|Gδ,A|

=
p− 1

|Gδ,A|
,

where Gδ,A = {g ∈ Gδ : g(A) = A} and the second equality follows from the fact that Gδ is sharply transitive
on Fp\{δ}. Again by the sharp transitivity of Gδ there exists exactly one affine transformation g ∈ Gδ,A

such that g(a1) = a2 for any two a1, a2 ∈ A, therefore, |Gδ,A| ≤ |A| = d and |GA
δ | ≥ (p− 1)/d = Ω(p).

Next, let be B ∈ GA
δ , where g(A) = B, then the affine transformation g ◦ h satisfies g ◦ h(1) = δ and

g ◦ h([r + 1, r + d]) = B. Next, consider the punctured code of the full-length RS code, defined by the d+ 1
evaluation points δ and B. Since RS codes are invariant under linear transformation, the code can be viewed
as a RS code with evaluation set 1 and [r+1, r+d] due to the affine transformation g◦h. Hence, repairing the
failed node δ with helper nodes B is equivalent to repairing the failed node 1 with helper nodes [r+1, r+d].
By Theorem 2.4.3 this can be done with bandwidth at most d/(d − k + 1) log(p) + Ok,d(1) bits. Note that
we invoked Theorem 2.4.3 with the punctured code [2d, k]p RS code, and thus the term On,k,d(1) is in this
case Ok,d(1). Hence, the set B ∈ GA

δ is indeed a valid set of helper nodes, and the result follows.

2.4.3 Repairing by any d helper nodes

In the quest of constructing an RS code over a prime field that is asymptotically MSR, we give a construction
of a folded RS code that follows from Construction 2.4.2. This new construction falls short in achieving this
goal in two aspects compared with Construction 2.4.2. First, the bandwidth is not asymptotically optimal,
and second, the alphabet is not of prime order, albeit very close to it. However, it allows us to repair
each failed node with any d ≥ k helper nodes and very small bandwidth. The construction is derived from
Construction 2.4.2 by a simple folding operation, and it was observed by Amir Shpilka (who kindly allowed
us to include it here).

Corollary 2.4.5. Let p be a large enough prime. Let k, d, and n be positive integers such that 2k < d < n,
then there exists an [n, k]p2 folded-RS code such that any node can be repaired using any d helper nodes with
bandwidth of at most (2d/(d− 2k + 1)) log(p) +On(1) bits.

Proof. Consider the [2n, 2k]p RS code provided in Construction 2.4.2, and recall that it is defined by the
evaluation points [1, n]∪[r+1, r+n]. Next, define the [n, k]p2 folded-RS as follows. For a polynomial f ∈ Fp[x]
of degree less than 2k define a codeword with ith super-symbol to be (f(i), f(i+ r)) for i = 1, . . . , n.

If the ith symbol fails, then any set of d nodes can repair it. Indeed, fix a set of helper nodes D ⊆
[n], |D| = d then the values f(i) and f(r + i) can be repaired by the values f(j), j ∈ D and f(j + r), j ∈ D,
respectively. The claim on the total bandwidth follows from the bandwidth guaranteed in Theorem 2.4.3,
and the result follows.

24

Note that by the cut-set bound, the lower bound on the repair bandwidth for codes with these parameters
is at least (2d/(d − k + 1)) log(p) bits. Hence, the guaranteed repair bandwidth given in Corollary 2.4.5 is
not asymptotically optimal, yet, for large values of d compared with k, it is very close to it.

The folded RS construction presented above can be viewed as an array code with subpacketization L = 2
over the field Fp. We are aware of only one more code construction with such a small subpacketization level
over its prime field Fp and with an efficient repair scheme. We state this result next, rephrased to fit this
context.

Theorem 2.4.6. [GW17b, Theorem 10] Let p be a prime. For any n ≤ 2(p − 1), there is an [n, k]p2 RS
code and linear repair scheme such that any failed node can be repaired using the n− 1 remaining nodes with
bandwidth (

3n

2
− 2

)
log(p).

By setting d = n− 1 in Corollary 2.4.5 we obtain a bandwidth of

2(n− 1)

n− 2k
log(p) +On(1) ,

which is significantly smaller in the regime where k ≤ C · n/2 for any constant C < 1/2 and even in the
regime where n−2k = ω(1). We note that it is still smaller (though not significantly) when n−2k is a small
constant integer. The major downside is that Corollary 2.4.5 requires that k < n/2 while Theorem 2.4.6
holds for any k ≤ n− 2.

2.5 An improved lower bound on the bandwidth

All of the constructions presented in this chapter do not achieve the cut-set bound (2.1), and the incurred
bandwidth is larger than it by an additive factor that depends on k or n. Hence, we ask if this is indeed
necessary, i.e., whether the cut-set bound is not tight for RS codes over prime fields, and if not, can it be
improved?

We answer this question in the affirmative by showing that the bandwidth is at least d log(p)/(d −
k + 1) + Ω(d log(k)/(d − k + 1)) which is an improvement over the cut-set bound by an additive factor of
Ω(d log(k)/(d− k + 1)).

Before stating and proving the main result, we shall recall the following well-known theorem from additive
combinatorics used in the proof.

Theorem 2.5.1 (Cauchy-Davenport inequality). [Cau12, Dav35] If p is a prime and A,B ⊆ Zp then,
|A+B| ≥ min(|A|+ |B| − 1, p).

Theorem 2.5.2. Consider a k-dimensional RS code over a prime field Fp, and assume that there is a repair
scheme for node α ∈ Fp by the d helper nodes α1, . . . , αd ∈ Fp where each helper node transmits the same
amount of information. Then, the bandwidth for each helper node is at least

log(kp)− 1

d− k + 1

bits.

Proof. For i = 1, . . . , d, let µi : Fp → [s] be the function calculated by the helper node (symbol) αi, and let
Ai be the partition of Fp defined by µi, i.e.,

Ai = {µ−1
i (m) : m ∈ [s]}.

It is clear that since the µi’s define a repair scheme, then for any choice of sets A1 ∈ A1, . . . , Ad ∈ Ad,
all the polynomials that pass through (α1, A1), . . . , (αd, Ad) attain the same value at α. Note that it might
be possible that there are no such polynomials.

25

Fix for i = 1, . . . , k, Ai ∈ Ai of size at least p/s, and denote by F the set of polynomials of degree less
than k, that pass through (α1, A1), . . . , (αk, Ak). Since the code dimension is k, the size of F is exactly∏k

i=1 |Ai|. Next, set U = {f(α) : f ∈ F} to be the set of values attained by the polynomials in F at α. We
have the following claim on the size of U .

Claim 2.5.3. |U | ≥ kp/s− k.

Proof. Let f =
∑k−1

i=0 fi(x−α)i be a polynomial in F , and note that f(α) = f0. By abuse of notation let also
f = (f0, . . . , fk−1) to be the vector of coefficients of f . Let V be the Vandermonde matrix defined by the k
distinct elements α1 − α, . . . , αk − α, i.e., Vij = (αj − α)i−1, where i, j = 1, . . . , k, and let A1 × . . . × Ak =
{(a1, . . . , ak) : ai ∈ Ai)}. Thus, f ∈ {wV −1 : w ∈ A1 × . . .×Ak} for any f ∈ F , and in particular

U =

k∑
i=1

Ai(V
−1)i1 . (2.11)

We claim that the first column of V −1 has nonzero entries. Indeed, the ith row of the inverse Vandermonde
matrix corresponds to the coefficients of a polynomial p(x) that vanishes at αj − α for j ∈ [k] \ {i} and
p(αi − α) = 1. Hence, the first entry of the row equals p(0) which is clearly nonzero since p(x) is a nonzero
polynomial of degree less than k with k − 1 nonzero roots.

Now, by applying k times the Cauchy-Davenport inequality we get that |U | ≥
∑k

j=1 |Aj | − k ≥ kp/s −
k.

We conclude that there are at least kp/s− k polynomials gi in F , i = 1, . . . , kp/s− k that attain distinct
values at α. Define a mapping F → Ak+1 × . . . × Ad by f 7→ (A′

k+1, . . . , A
′
d), where A′

i is the set in the
partition Ai that contains f(αi). Clearly, this map has to be injective on the polynomials gi, otherwise the
repair scheme would not be able to repair the failed node. Hence

sd−k ≥ k · p
s
− k ≥ kp

2s
.

By rearranging, we get that

log(s) ≥ log(kp)− 1

d− k + 1
.

The following theorem is an inverse theorem to the Cauchy-Davenport inequality, which characterizes
the sets that attain the bound with equality.

Theorem 2.5.4. [Vos56, Vosper’s theorem] Let A,B ⊆ Zp where |A|, |B| ≥ 2 and |A+ B| ≤ p− 2. Then
|A+B| = |A|+ |B| − 1 if and only if A and B are arithmetic progressions with the same step.

By examining the improved bound’s proof, it is clear that a large set U in the proof of Theorem 2.5.2
would imply a strong lower bound on the bandwidth. Considering the extreme case where we replace the size
of U with the trivial lower bound of p/s, we recover the cut-set bound. Therefore, the improvement follows
from sumsets’ expansion phenomenon over prime fields, exemplified by the Cauchy-Davenport inequality.
On the other hand, it is known that the cut-set bound is tight over large field extensions, which implies that
the trivial lower bound of p/s is, in fact, tight. And indeed, field extensions do contain nontrivial subsets
whose sumset do not exhibit any expansion, i.e., subsets A,B such that |A+B| = |A|. Hence, we arrive at
the following conclusion. If one wants to construct efficient repair schemes for RS codes over prime fields,
then the size of the set U should have little expansion as possible. Identifying the structure of such sets
(a.k.a. sets with small doubling constant) is a well-studied problem in additive combinatorics, known as the
inverse sum set problem. Over prime fields, Vosper’s theorem (Theorem 2.5.4) shows that the only sets that
attain the Cauchy-Davenport lower bound with equality are arithmetic progressions with the same step.
This fact lies at the core of all the constructions given in this chapter, as arithmetic progressions define all

26

the functions computed by the helper nodes with the same step. For example, consider the [n, 2] RS code
given in Section 2.3.1, and assume that we would like to repair the nth symbol. Then, a simple computation
shows that by the partitions defined for the repair scheme, the set U takes the following form

U =
(α1 − αn)(α2 − αn)

α1 − α2
(A−B)

where A and B are both arithmetic progressions of size t and step 1, and therefore |U | = |A|+ |B|−1, which
is as small as possible.

As a final remark, one might ask whether a random repair scheme is expected to have low bandwidth.
By a random scheme, we mean that the function computed by each helper node is randomly picked among
all functions with a fixed range size, which is equivalent to picking a random partition of the field to a fixed
number of sets. One can verify that in such a case, with high probability, the size of U is as large as possible
since the sumset of two random subsets is large with high probability. Thus, the event of picking an efficient
repair scheme is improbable, and one needs to carefully construct the repair scheme to obtain low bandwidth.

2.6 Concluding remarks and open problems

The study presented in this chapter was inspired by the interesting open question raised in [GW17b] regarding
whether nonlinear repair schemes exist, and if so, can they outperform linear schemes. Since for codes over
prime fields, any linear repair scheme is the trivial scheme, any efficient repair scheme, i.e., a repair scheme
that outperforms the trivial one, must be nonlinear. Hence, our primary focus was on constructing repair
schemes of RS codes over prime fields.

We were able to exhibit the first nonlinear repair scheme of RS codes over prime fields, which is also the
only known example of a nonlinear repair scheme of any code. As a byproduct, we showed that nonlinear
ones can outperform linear repair schemes. Furthermore, some of the repair schemes are asymptotically
optimal, as the alphabet size tends to infinity. Lastly, we also improved the cut-set bound for RS codes over
prime fields and discussed connections to leakage-resilient Shamir’s Secret Sharing over prime fields.

We end this discussion by mentioning several open questions that, in our opinion, could further improve
the study of nonlinear repair schemes.

1. Is it possible to apply our approach of using arithmetic progressions to obtain RS codes over prime
fields that are asymptotically MSR codes for any positive integers k < d < n? Note that it is unknown
if such codes exist, although they likely do. Moreover, is it possible to generalize the approach to other
codes over prime fields?

2. The work of [BDIR18] showed that for some parameters, an adversary learns almost nothing on the
secret in SSS, whereas we showed in this chapter the other extreme case. Namely, for some other
parameters, the adversary learns the entire secret. Hence, it is interesting to fill in the gaps and
improve our understanding of SSS performance under the remaining parameters regime. In particular,
better understand the dependence between the field size p and the number of bits m leaked to the
adversary to learn something or the whole secret. For example, what can be said for m = O(log(p)),
k = O(n), and p > 2n. Notice that any new result would automatically have implications on the other
model of repairing RS codes.

3. It is known [TYB17, AG19] that linear MSR code with a linear repair exists only over alphabet size,
which is at least doubly exponential in the code dimension. Can this result be generalized to nonlinear
repair schemes? In particular, does the field size have to be large for efficient repair schemes to exist
over prime fields?

27

2.7 Appendix

2.7.1 Proof of Lemma 2.4.1

Proof. We prove it by induction on s. If s = 2 it holds that

lcm(a1, a2) =
a1 · a2

gcd(a1, a2)
.

Assume that the claim holds for s− 1. It holds that

lcm(a1, . . . , as) = lcm(a1, lcm(a2, . . . , as))

=
a1 · lcm(a2, . . . , as)

gcd(a1, lcm(a2, . . . , as))

≥ a1 · · · as
gcd(a1, a2 · · · as) ·

∏
2≤i<j≤s gcd(ai, aj)

(2.12)

≥ a1 · · · as∏s
i=2 gcd(a1, ai)

∏
2≤i<j≤s gcd(ai, aj)

(2.13)

=
a1 · · · as∏

1≤i<j≤s gcd(ai, aj)
.

Inequality (2.12) follows from the induction hypothesis and from the fact that lcm(a2, . . . , as) | a2 · · · as
which implies that

gcd(a1, lcm(a2, . . . , as)) ≤ gcd(a1, a2 · · · as) .

Inequality (2.13) follow from Claim 2.7.1 which is stated and proved below.

Claim 2.7.1. Let b, a1, . . . , as be integers. It holds that

gcd(b, a1 · · · as) ≤ gcd(b, a1) · gcd(b, a2) · · · gcd(b, as)

Proof. It is easy to check that gcd(b, a1a2) divides the product gcd(b, a1) · gcd(b, a2). Thus, by induction on
s, we get that gcd(b, a1 · · · as)| gcd(b, a1 · · · as−1) gcd(b, as)| gcd(b, a1) · · · gcd(b, as).

2.7.2 Repairing αi for i ∈ {1, 2, 3}
Recall the four evaluation points

α1 = 0, α2 = −1, α3 =
p− 1

2
, α4 = −(2t+ 1) ,

where we assume that t =
⌊√

p/5
⌋
. In the following, we show that Proposition 2.2.4 holds also for all the

remaining symbols.
Assume that we wish to repair the ith node for some i ∈ {1, 2, 3} and define γj = αj − αi for every

j ∈ [4] \ {i}. By Proposition 2.2.4, the repair of αi succeeds if for any polynomial f of degree at most one,
that satisfies f(αj) ∈ γj · [−t, t] for j ∈ [4] \ {i}, it holds that f(αi) = 0. Let f be such a polynomial, i.e.,
deg(f) ≤ 1 and f(αj) ∈ γj · [−t, t] for j = [4] \ {i}, write f(α4) = m · γ4 for some m ∈ [−t, t], and consider

the polynomial f̂ := m(x− αi). We will show that f(αi) = f̂(αi) = 0, as needed.

Define g := f − f̂ and denote {k, ℓ} = [3] \ {i}. It holds that

g(αk) ∈ γk · [−2t, 2t]

g(αℓ) ∈ γℓ · [−2t, 2t]

g(α4) = 0

g(αi) = f(αi) .

28

Thus, g(x) = s(x− α4) and calculating, we get

s ∈ αk − αi

αk − α4
[−2t, 2t]

s ∈ αℓ − αi

αℓ − α4
[−2t, 2t] .

We will show that if a certain condition is satisfied, then there are no a, b ∈ [−2t, 2t] \ {0} such that

(αℓ − α4)(αℓ − αi)
−1 · a = (αk − α4)(αk − αi)

−1 · b (2.14)

which implies that s = 0, as needed.
Assume that we take a realization of Fp as all the integers whose absolute value are less than p/2, i.e.,

Fp = {0,±1,±2, · · · ,±p−1
2 }. Assume that the absolute value of the products (αk − α4)(αk − αi)

−1 · 2t and
(αℓ − α4)(αℓ − αi)

−1 · 2t are less than p/2. Hence, in such a case the calculation in equation (2.14) holds
over Z.

Lastly, if the lcm of |(αk − α4)(αk − αi)
−1| and |(αℓ − α4)(αℓ − αi)

−1| is greater than 2t · min(|(αk −
α4)(αk −αi)

−1|, |(αℓ −α4)(αℓ −αi)
−1|) (again we view them as integers), then it is easy to verify that there

are no a and b in [−2t, 2t] \ {0} such that equation (2.14) holds. Therefore, it must be that a = b = 0 which
implies that s = 0, and we are done.

Now, note that there is symmetry between k and ℓ, thus we check only the following three options:

• k = 1, ℓ = 2, i = 3. In this case, we get that |(αk−α4)(αk−αi)
−1| = 4t+2, |(αℓ−α4)(αℓ−αi)

−1| = 4t,
and lcm(4t+ 2, 4t) = 4t · (2t+ 1).

• i = 1, ℓ = 2, k = 3. In this case, we get that |(αk−α4)(αk−αi)
−1| = 4t−1, |(αℓ−α4)(αℓ−αi)

−1| = 2t,
and lcm(4t− 1, 2t) = 2t · (4t+ 1).

• k = 1, i = 2, ℓ = 3. In this case, we get that |(αk−α4)(αk−αi)
−1| = 2t+1, |(αℓ−α4)(αℓ−αi)

−1| = 4t+1,
and lcm(4t+ 1, 2t+ 1) = (4t+ 1) · (2t+ 1).

In all cases, one can verify that |(αk − α4)(αk − αi)
−1 · 2t|, |(αℓ − α4)(αℓ − αi)

−1 · 2t| < p/2. Furthermore,
in all cases, it holds that the lcm of |(αk − α4)(αk − αi)

−1| and |(αℓ − α4)(αℓ − αi)
−1| is strictly greater

than 2t ·min(|(αk − α4)(αk − αi)
−1|, |(αℓ − α4)(αℓ − αi)

−1|). We conclude that αi can be repaired with the
desired bandwidth.

29

Chapter 3

Linear codes correcting insertions and
deletions

3.1 Introduction

In this chapter, We construct linear codes over Fq, for q = poly(1/ε), that can efficiently decode from a δ
fraction of insdel errors and have rate (1 − 4δ)/8 − ε. We also show that by allowing codes over Fq2 that
are linear over Fq, we can improve the rate to (1− δ)/4− ε while not sacrificing efficiency. Using this latter
result, together with a careful code concatenation and placing buffers, we construct fully linear codes over
F2 that can efficiently correct up to δ < 1/54 fraction of deletions and have rate R = (1 − 54 · δ)/1216.
Cheng, Guruswami, Haeupler, and Li [CGHL21] constructed codes with (extremely small) rates bounded
away from zero that can correct up to a δ < 1/400 fraction of insdel errors. They also posed the problem of
constructing linear codes that get close to the half-Singleton bound (proved in [CGHL21]) over small fields.
Thus, our results significantly improve their construction and get much closer to the bound.

3.1.1 Insertion and Deletions

We denote the ith symbol of a string s (or of a vector v) as si (equivalently vi). Throughout this chapter,
we shall move freely between representations of vectors as strings and vice versa. Namely, we shall view each
vector v = (v1, . . . , vn) ∈ Fn

q also as a string by concatenating all the symbols of the vector into one string,
i.e., (v1, . . . , vn) ↔ v1 ◦ v2 ◦ . . . ◦ vn. Thus, if we say that s is a subsequence of some vector v, we mean that
we view v as a string and s is a subsequence of that string. A run r in a string s is a single-symbol substring
of s such that the symbol before the run and the symbol after the run are different from the symbol of the
run.

We first describe what are insertions and deletions and the metric that is used in this context.

Definition 3.1.1. Let s ∈ Σ∗. The operation in which we remove a symbol from s is called a deletion
and the operation in which we place a new symbol from Σ between two consecutive symbols in s is called an
insertion.

A substring of s is a string obtained by taking consecutive symbols from s. A subsequence of s is a string
obtained by removing some (possibly none) of the symbols in s.

Note a symbol substitution can be achieved via a deletion followed by an insertion at the same location
(an erasure can be interpreted as a deletion together with information of where this deletion has taken place).
However, insertions and deletions are much harder to deal with than substitutions. A crucial observation is
that they can affect the length of the string received (unlike substitutions or erasures). Thus, we can not
use the usual hamming distance. The metric that is used in this scenario is the edit distance metric which
is closely related to the problem of finding the longest common subsequence

30

Definition 3.1.2. Let s, s′ ∈ Σ∗. A longest common subsequences between s and s′, is a subsequence ssub
of both s and s′, of maximal length. We denote by |LCS(s, s′)| the length of a longest common subsequence.1

The edit distance between s and s′, denoted by ED(s, s′), is the minimal number of insertions and
deletions needed in order to turn s into s′.

Lemma 3.1.3 (See e.g. Lemma 12.1 in [CR03]). It holds that ED(s, s′) = |s|+ |s′| − 2 |LCS(s, s′)|.

This implies that in order to compute the edit distance, it suffices to compute the LCS for which we have
a dynamic programming algorithm that runs in time O(m2) where m is the length of the strings.

3.1.2 Linear codes

Linear codes are desirable for many reasons: they have a compact representation (they are determined by
their generating matrix), they are efficiently encodable, and in some settings, we even have linear codes with
linear encoding and decoding time, and often they are simpler to analyze.

3.1.3 Basic definitions and notation

A linear code over a field F is a linear subspace C ⊆ Fn. The rate of a linear code C of block length n is
R = dim(C)/n. Every linear code of dimension k can be described as the image of a linear map, which,
abusing notation, we also denote with C, i.e., C : Fk → Fn. Equivalently, a linear code C can be defined by
a parity check matrix H such that x ∈ C if and only if Hx = 0. The minimal distance of C with respect to
a metric d(·, ·) is defined as distC := minv ̸=u∈C d(v, u). When C ⊆ Fn

q has dimension k and minimal distance
d we say that it is an [n, k, d]q code, or simply an [n, k]q code.

3.1.4 Previous results

In [AGFC07], it was shown that linear codes that can correct even one deletion, have a rate at most 1/2,
which is achieved by a trivial repetition code. More generally, in [CGHL21], it was shown that codes that
can decode from a δ fraction of insdel errors cannot have rate larger than (1 − δ)/2 + o(1) where the o(1)
term goes to zero as the block length tends to infinity. This bound is called the “half-Singleton bound,” and
it is in sharp contrast to the fact that nonlinear insdel codes, or even affine codes (codes that form an affine
space) can achieve rate close to 1 while still being able to decode from a constant fraction of insdel errors
[CGHL21].

Theorem 3.1.4 (Theorem 4.2 in [CGHL21]). For any δ > 0 and prime power q, there exists a family of
linear codes over Fq that can correct up to δn insertions and deletions, with rate (1− δ)/2− h(δ)/ log2(q).

The proof of Theorem 3.1.4 uses the probabilistic method, showing that, with high probability, a random
linear map generates such code. Complementing their result, they proved that their construction is almost
tight. Specifically, they provided the following upper bounds, which they call the “half-Plotkin bound and
the “half-Singleton bound,” respectively.

Theorem 3.1.5 (Half-Plotkin bound: Theorem 5.1 in [CGHL21]). Fix a finite field Fq. Every Fq-linear
code that is capable of correcting a δ > 0 fraction of insdel errors has rate at most 1

2 (1−
q

q−1δ) + o(1).

Theorem 3.1.6 (Half-Singleton bound: Corollary 5.1 in [CGHL21]). Every linear insdel code that is capable
of correcting a δ fraction of deletions has rate at most (1− δ)/2 + o(1).

The authors in [CGHL21] also constructed explicit linear codes for insdel errors, given next.

Theorem 3.1.7. [CGHL21, Theorem 1.4] Fix any finite field Fq. There is an explicit construction of an
Fq-linear code family with rate bounded away from zero, a linear time encoding algorithm, and a polynomial
time decoding algorithm to correct a positive constant fraction of insertions and deletions. The generator
matrix of codes in the family can be deterministically computed in polynomial time in the code block length.

1Note that a longest common subsequence may not be unique as there can be a number of subsequences of maximal length.

31

These codes have rate R < 2−80 [GK], a linear time encoding algorithm, and an O(n4) time decoding
algorithm from a δ < 1/400 fraction of insdel errors. Improving upon these parameters was left as an open
an question in [CGHL21].

3.1.5 Our results

In this chapter, we improve the results presented in [CGHL21]. We give explicit constructions of codes over
small fields that are efficient (namely, have polynomial-time encoding and decoding algorithms) and almost
attain the half-singleton bound. Specifically,

Theorem 3.1.8. For every small enough constant ε > 0, δ ∈ (0, 1/4) and q = poly(1/ε), there is an
explicit construction of a linear code over Fq of rate R > (1 − 4δ)/8 − ε that can correct from a δ fraction
of adversarial insdel errors. Furthermore, the running time of the decoding algorithm is O(n3).

By relaxing the linearity requirement, we construct “half-linear” codes. We say that a code is half-linear
when it is defined over the field Fq2 and is linear over Fq. The half-linear codes that we construct can decode
from any δ fraction of insdel errors, and their rate is close to (1− δ)/4.

Theorem 3.1.9. For every small enough constant ε > 0, δ ∈ (0, 1), and q = poly(1/ε) there is an explicit
construction of a code over Fq2 , which is linear over the subfield Fq, that has rate R > (1− δ)/4− ε and can
correct from δ fraction of insdel errors. Furthermore, the running time of the decoding algorithm is O(n3).

Using this construction, we obtain linear binary codes that can efficiently correct from adversarial dele-
tions.

Theorem 3.1.10. There exists an explicit linear binary code that can correct from δ < 1/54 fraction of
adversarial deletions in O(n3) time and has the rate R = (1− 54 · δ)/1216.

While the algorithm in Theorem 3.1.10 is only guaranteed to decode from deletions, we note that
information-theoretically, the code can also decode from 1/54 fraction of adversarial insdel errors, as the
claim implies a lower bound on the edit distance between any two codewords.

Theorems 3.1.8 and 3.1.10 improve upon the (explicit) constructions of linear codes given in [CGHL21],
which can handle a fraction δ < 1/400 of insdel errors and whose rate is < 2−80. We note, however, that
Theorem 3.1.10 only gives an efficient decoder against deletions, whereas the algorithm in [CGHL21] decodes
from both insertions and deletions.

3.1.6 Proof idea

We first observe that it is easy to construct codes against deletions from any code that can correct erasures:
simply add indices to the coordinates of each codeword. Specifically, if C is a code that can correct from e
erasures, then we can consider the following code

C′ = {((1, c1), . . . , (n, cn)) | c ∈ C} .

It is easy to see that this code can decode from e adversarial deletions - the missing indices indicate the
location of the deletions, and therefore we can treat them as erasures. With a slightly more advanced
algorithm, this code can also decode from adversarial insertions (for this to work, we need a code that can
decode from errors as well). This construction has two problems. The first is that it is not linear. The
second is that it requires an alphabet of size Ω(n).

The problem of linearity can be solved as follows. Assume C ⊆ Fn
q is linear. To add indices while

preserving linearity we replace (i, ci) with (ci, i · ci). Observe that the resulting code is linear over Fq,
but symbols of the codeword are in Fq2 . We shall call such codes half-linear codes. To make the code
fully linear, we replace each symbol (ci, i · ci) with two symbols, ci and i · ci. The problem is that now,
after adversarial deletions, it is unclear which indices “survived” and which were deleted or corrupted. To
overcome this difficulty, we add small “buffers” of zeros between the different indices. That is, the new

32

codeword is (c1, 1 · c1, 0, 0, c2, 2 · c2, 0, 0, c3, . . .). Note that we still need a large alphabet to have n different
field elements that can serve as indices.

To reduce the alphabet size, we use synchronization strings instead of field elements for the indices.
Synchronization strings were defined in the breakthrough work of Haeupler and Shahrasbi [HS17].

Definition 3.1.11. A string S ∈ Σn is called an ε-synchronization string if for every 1 ≤ i < j < k ≤ n+1
it holds that ED(S[i, j), S[j, k)]) > (1− ε) · (k − i), where S[i, j) denotes the string Si ◦ Si+1 ◦ · · · ◦ Sj−1 and
Si is the ith coordinate of S.

Haeupler and Shahrasbi proved the existence of such strings and gave a polynomial-time randomized algo-
rithm for constructing them. An explicit construction, with improved alphabet size, was given in [CHL+19].

Theorem 3.1.12 (Theorem 1.2 in [CHL+19]). For every n ∈ N and for every ε ∈ (0, 1), there is a polynomial
time (in n) deterministic construction of an ε-synchronization string, of length n, over an alphabet of size
O(ε−2).

In [HS17] Haeupler and Shahrasbi showed that synchronization strings could be used instead of indices.
Specifically, they proved that if C can decode from d hamming errors and e erasures, for 2d + e < δ, and
S = (S1S2 . . . Sn) is an ε-synchronization string, then the code

CID := {((S1, c1), . . . , (Sn, cn)) | c ∈ C} , (3.1)

can decode from (δ −O(
√
ε))n insdel errors.

Theorem 3.1.13 ([HS21]). Let δ, ε ∈ (0, 1) and let S be an ε-synchronization string. Let C be a code that
can decode, in time T (n), from d hamming errors and e erasures, where 2d + e < δn. Then, the code
CID := {((S1, c1), . . . , (Sn, cn)) | c ∈ C} can decode from (δ− 12

√
ε)n insdel errors in time O(n2/

√
ε)+T (n).

We note that this code is not linear, even when C is a linear code, as the synchronization string S is fixed.
However, as outlined above, we can tweak this construction to make the code linear while still maintaining
its decoding property. We combine this idea with an algebraic geometry code (AG-code) as the base code C
to obtain our results. We choose these codes as our base codes as they have the best-known rate-distance
tradeoff, and in addition, they come with efficient decoding algorithms. Thus, codewords of our code have
the form

C′ = {(c1, S1 · c1, 0, 0, . . . , 0, 0, cn, Sn · cn) | c ∈ C} .

To further reduce the alphabet to binary, we perform two additional steps. First, we concatenate our code
from Theorem 3.1.9 with a carefully chosen binary code of fixed length. Then we add buffers of zeroes
between any two concatenated words. A short buffer between the encodings of ci and Si ·ci and a long buffer
between the encodings of Si · ci and ci+1. The buffers allow our decoding algorithm to correctly identify the
encoding of many pairs (ci, Si · ci). Then, by using the synchronization string, S, and the decoder of C, we
obtain a decoding algorithm.

3.1.7 Organization of the chapter

The chapter is organized as follows. In Section 3.2 we construct linear (and half-linear) codes, over small
alphabets, that can handle insdel errors, and prove Theorem 3.1.9 and Theorem 3.1.8. In Section 3.3, we
give the construction of linear binary codes that can decode from deletions, thus proving Theorem 3.1.10.

3.2 Linear Insdel Codes over Finite Alphabet via Synchronization
Strings

In this section, we prove Theorems 3.1.8 and 3.1.9. We follow the strategy outlined in Section 3.1.6.

33

Algorithm 1: Decode C′

input : A corrupted codeword y = (e1, . . . , et).
output: A message x ∈ Fk

q .

[1] Set L to be an empty list
[2] for i = 1, . . . , t do

Let ei = (a, b)
if b = 0 then

Go to the next i
end
Add to L the tuple (b/a, a)

end

[3] If L is empty, return the zero codeword c = 0; else decode L using the decoding algorithm of CID

given in Theorem 3.1.13.

[4] Let cID = ((S1, c1), . . . , (Sn, cn)) be the decoded codeword. Return the codeword
c = ((c1, S1c1), . . . , (cn, Sncn)).

As our base code C, we shall use an AG-code. The well-known constructions of [TVZ82, GS95, GS96,
SAK+01] beat the Gilbert-Varshamov bound2 over Fq, for q ≥ 49. Moreover, these code have an efficient
decoder that can correct both errors and erasures, almost up to its correction capability [SV90, Kot96]. The
interested reader is referred to [Sti09] for further information on AG-codes and their decoding.

Theorem 3.2.1 ([TVZ82, SV90, Kot96]). Let q = p2m be a square where p is a prime and m is a positive
integer. For every 0 < δ ≤ 1 − 1√

q−1 there exists an explicit linear code C over Fq, of minimal distance δ

and rate

R ≥ 1− 1
√
q − 1

− δ .

Moreover, there is a decoding algorithm that runs in time O(n3) and can correct from d hamming errors and

e erasures, for 2d+ e <
(
δ − 1√

q−1

)
n.

We first prove Theorem 3.1.9 as the proof of its decoding algorithm is easier and then prove Theorem 3.1.8.

3.2.1 Half-linear insdel codes

Construction 3.2.2. Let δ ∈ (0, 1) and ε a small constant. Let p be a prime such that p = Θ(ε−2) and set
q = p2 = Θ(ε−4). Set δC = (1+ δ+13ε)/2 and let C be the code from Theorem 3.2.1, defined over the finite
field Fq, with rate RC > 1 − δC − ε. Let S = (S1S2 . . . Sn) be an ε2-sync string, where Si ∈ Fq \ {0} for all
i ∈ [n]. Let EncC : Fk

q → Fn
q be the encoding map of C. We define the code C′ via the encoding map EncC′ :

For a ∈ Fk
q , let EncC(a) = c = (c1, . . . , cn). Then,

EncC′(a) = ((c1, S1 · c1), (c2, S2 · c2), . . . , (cn, Sn · cn)) . (3.2)

Namely, C′ is the image of Fk
q under EncC′ . One can easily observe that the rate C′ is RC′ = RC/2 >

(1− δ)/4− 4ε, and that the code is linear over Fq.

Proposition 3.2.3. Algorithm 1 runs in time O(n3) and can decode C′ (given in Construction 3.2.2), from
δn worst case insdel errors.

Proof. For c = ((c1, S1c1), . . . , (cn, Sncn)) ∈ C′ let cID = ((S1, c1), . . . , (Sn, cn)) ∈ CID. Observe that CID is
as in Equation (3.1). To prove the claim we shall interpret insdel errors in C′ as insdel errors in CID and
then apply Theorem 3.1.13.

2The Gilbert-Varshamov bound shows what parameters random (linear) codes achieve.

34

Assume first that the corrupted codeword is the zero vector. Then, since the hamming-weight of each
nonzero codeword of C′ is at least δCn > δn, the only codeword that would produce this corrupted codeword
from δn insdel errors is the zero codeword, hence, in Step 3 successfully decodes the zero codeword. Next,
we assume that the corrupted codeword is not the zero vector.

The map (a, b) → (b/a, a) maps each nonzero coordinate of c ∈ C′ to the corresponding coordinate of
cID ∈ CID and therefore, by applying it coordinate-wise, we can interpret any insdel error to c as an insdel
error to cID.

Observe that in addition to the errors introduced by the adversary, in Step 2 of Algorithm 1 we treat any
zero coordinate as a deletion. Since the minimal distance of C is δC , a nonzero codeword c ∈ C′ has at most
n(1− δC) zero coordinates. Therefore, Step 2 can cause (1− δC)n additional insdel errors. In conclusion,

ED(cID, L) ≤ (1− δC + δ)n = (δC − 13ε)n ,

where the equality follows from the choice of δC in Construction 3.2.2. As C can correct from d hamming
errors and e erasures, for 2d+ e ≤ (δC − ε)n, Theorem 3.1.13 implies that Step 3 succeeds, and the decoder
outputs cID. Step 4 clearly returns the codeword c.

To prove the claim regarding the running time we note that Steps 1 and 2 take linear time and that by
Theorem 3.2.1, the decoding algorithm of Theorem 3.1.13 runs in time O(n2/ε) +O(n3) = O(n3).

Remark 3.2.4. As the proof shows, Step 2 of Algorithm 1 ignores the symbol (0, 0). In other words, it treats
this symbol as a deletion. Thus, from the point of view of the adversary, there is no need to corrupt the zero
symbol.

Proof of Theorem 3.1.9. The proof follows immediately from Construction 3.2.2 and Proposition 3.2.3. In-
deed, the code described in Construction 3.2.2 maps k symbols of Fq to n symbols of Fq2 and hence
its rate is k/(2n). As k was chosen so that RC = k/n > 1 − δC − ε = (1 − δ − 15ε)/2, we get that
RC′ = RC/2 > (1− δ)/4− 4ε. By construction the code is linear over Fq.

3.2.2 Full linear insdel codes

We next prove Theorem 3.1.8. As described in Section 3.1.6, to get full linear insdel codes we use a similar
construction albeit with two significant modifications: First, we “flatten” the code, i.e., we expand each
symbol (ci, Si · ci) ∈ Fq2 to two symbols ci, Si · ci ∈ Fq. Secondly, to protect our codeword from insdel
errors, we additionally insert two zeros between every two adjacent pairs. Thus, the corresponding word to
((c1, S1 · c1), (c2, S2 · c2), . . . , (cn, Sn · cn)) is (c1, S1 · c1, 0, 0, c2, S2 · c2, 0, 0, . . . , cn, Sn · cn). It is clear that in
this way we get a linear code. Formally:

Construction 3.2.5. Let δ ∈ (0, 1/4) and ε a small enough constant. Set δC = (1 + 4δ + 13ε)/2 < 1. Let
p be a prime such that p = Θ(ε−2) and set q = p2. Let C be the code from Theorem 3.2.1, defined over the
finite field Fq, with minimal distance δC and rate RC = 1 − δC − ε. Let S = (S1S2 . . . Sn) be an ε2-sync
string, where Si ∈ Fq\{0} for all i ∈ [n] Let EncC : Fk

q → Fn
q be the encoding map of C. We define the code

C′′ via the encoding map EncC′′ : For a ∈ Fk
q , let EncC(a) = c = (c1, . . . , cn). Then,

EncC′′(a) = (c1, S1 · c1, 0, 0, c2, S2 · c2, 0, 0, . . . , cn, Sn · cn) . (3.3)

Namely, C′′ is the image of Fk
q under EncC′′ . Clearly, C′′ ⊂ F4n−2

q is an Fq linear space.

Proposition 3.2.6. Algorithm 2 runs in time O(n3) and can decode C′′, given in Construction 3.2.5, from
δn worst case insdel errors.

Proof. Let c = (c1, S1c1, 0, 0, . . . , 0, 0, cn, Sncn) ∈ C′′ and denote by cID = ((S1, c1), . . . , (Sn, cn)) ∈ CID the
corresponding codeword, where CID is as in the proof of Proposition 3.2.3. We will follow the same reasoning
as in the proof of Proposition 3.2.3; translate insdel errors in C′′ to insdel errors in CID, and then apply
Theorem 3.1.13.

35

Algorithm 2: Decode C′′

input : A corrupted codeword y = (e1, . . . , et).
output: A message x ∈ Fk

q .

[1] Set L to be an empty list
Remove any run of zeros at the beginning and the end of y, and write y as

y = s1 ◦ 0̄ ◦ s2 ◦ 0̄ ◦ · · · ◦ 0̄ ◦ sm,

where 0 ≤ m ≤ t, the si’s are strings of symbols that do not contain any 0’s, and the notation 0̄
corresponds to a string of consecutive zeros of any length.

[2] for i = 1, . . . ,m do
if |si| ≠ 2 then

Continue
end
Let a, b be the first and second elements in si. Add to L the tuple (b/a, a)

end

[3] If L is empty, return the zero codeword, c = 0; else decode L using the algorithm of CID given in
Theorem 3.1.13.

[4] Let cID = ((S1, c1), . . . , (Sn, cn)) be the decoded codeword. Return the codeword
c = (c1, S1c1, 0, 0, . . . , 0, 0, cn, Sncn).

Assume first that the corrupted codeword is the zero vector. Then, since the hamming-weight of each
nonzero codeword of C is at least δCn and Si ̸= 0 for each i, the normalized minimum distance of C′′ is at
least 2δCn/(4n− 2) > δC/2. On the other hand,

δ <
1

4
<

1 + 4δ + 13ε

4
=

δC
2
.

Hence, the only codeword that would produce this corrupted codeword from δ(4n − 2) insdel errors is the
zero codeword, and Step 3 successfully decodes the zero codeword. Next, we assume that the corrupted
codeword is not the zero vector.

Since the minimal distance of C is at least δCn, any nonzero c ∈ C′′ contains at most n(1 − δC) pairs
ci, Sici that are equal to 0, 0. Every such zero pair is interpreted as a deletion in Step 2 of Algorithm 2.
These deletions are in addition to those made by the adversary. The adversary, who knows the decoding
algorithm, will clearly ignore the zero pairs ci, ciSi for ci = 0, and therefore will either “ruin” nonzero pairs by
converting them to nonzero blocks (i.e., blocks with no zeros) of lengths different than 2, or by constructing
erroneous pairs.

The most economic way to construct the former is by inserting (deleting) a symbol to (from) an existing
nonzero pair, respectively. This increases ED(cID, L) by 1. Also, the adversary can merge, say b ≥ 2
consecutive blocks, into a single block by deleting the buffers between them. This “costs” 2(b− 1) deletions
that translate to an increase to ED(cID, L) by b. Hence, on average, each deletion or insertion in a nonzero
block of length different than 2 increases the edit distance by at most 1.

The construction of the latter, i.e., an erroneous pair, would clearly cost 2 insertions between the zeros of
a buffer or by a symbol deletion from an existing nonzero pair, followed by a new nonzero symbol insertion.
This is clearly less economical than ruining nonzero pairs, since in this case, on average, in order to increase
ED(cID, L) by 1, the adversary must perform two edit operations.

To conclude, the accounting above indicates that every insdel error made by the adversary increases the
edit distance between L and cID by at most one. It follows that after the adversary performs δ · (4n − 2)
insdel errors (recall that c ∈ F4n−2

q),

ED(cID, L) ≤ (1− δC)n+ 4δn = (δC − 13ε)n .

36

Thus, by Theorem 3.1.13 and since the code C can correct from d hamming errors and e erasures where
2d+ e ≤ (δC − ε)n, Steps 3 and 4 succeed.

The claim regarding the running time follows exactly as in the proof of Proposition 3.2.3.

We now conclude the proof of Theorem 3.1.8.

Proof of Theorem 3.1.8. As before, the proof is immediate from Construction 3.2.5 and Proposition 3.2.6.
The rate satisfies

RC′′ =
RC

4
>

1− δC − ε

4
=

1− 4δ − 15ε

8
≥ 1− 4δ

8
− 2ε .

3.3 Binary Linear Codes

In this section we prove Theorem 3.1.10. To ease the reading, we repeat the statement of the theorem.

Theorem 3.1.10. There exists an explicit linear binary code that can correct from δ < 1/54 fraction of
adversarial deletions in O(n3) time and has the rate R = (1− 54 · δ)/1216.

As explained in Section 3.1.6 our construction concatenates the code of Theorem 3.1.9 with an adequately
chosen short binary code and then adds buffers between the encoding of different symbols: short buffers
between the encoding of ci and Si · ci and long buffers between the encodings of Si · ci and ci+1. The
specially tailored inner code is a linear binary code that can correct from a small fraction of insdel errors
and has the property that, with the exception of the zero word, no codeword has large runs of zeroes. We
shall prove that such codes exist and then construct one greedily.

3.3.1 The inner code

The following proposition describes the properties that our inner code should possess and is proved using
the probabilistic method. As the code has a fixed length, we shall use the brute force algorithm to construct
it.

Proposition 3.3.1. Set δin = 1/6 and ρ = 1/17. There exists m0 ∈ N such that for any m > m0, which is
a multiple of 102,3 there is a binary linear code Cin ⊂ {0, 1}m of rate Rin = δin/16 such that

1. For any two substrings cs, c
′
s of any two distinct codewords c ̸= c′ ∈ Cin such that |cs|, |c′s| ≥ (1− 2δin+

ρ)m, it holds that LCS(cs, c
′
s) < min(|cs|, |c′s|)− ρm.

2. Any substring csub of length δinm, of any nonzero codeword c ∈ Cin contains at least ρm+ 1 ones.

Observe that Proposition 3.3.1(1) implies that ED(cs, c
′
s) > 2ρm so in particular we can brute force

correct any ρm insdel errors in Cin in time exp(m).

Proof. Let G ∈ Fm×Rinm
2 be a uniformly chosen random matrix. G will serve as a generator matrix for a

linear code C, i.e., C = {Gv | v ∈ FRinm
2 }. We next prove that the probability that C does not satisfy any of

the properties in the proposition is small.
The proof that Proposition 3.3.1(1) holds with high probability relies on the following simple and intuitive

claim given in [CGHL21].

Claim 3.3.2 (Claim 4.1 of [CGHL21]). Let C be a random linear code and let c ̸= c′ be any two distinct
codewords. Fix two sets of indices {s1, . . . , st}, {s′1, . . . , s′t} ⊂ [n]. Then,

Pr[∀i ∈ [t], (c)si = (c′)s′i] ≤ 2−t .

3We require this to ensure that both ρm and δinm are integers, in order to avoid the use of ceilings and floors.

37

Let c ̸= c′ ∈ C be distinct and cs and c′s be substrings of c and c′, such that r = min(|cs|, |c′s|) ≥
(1 − 2δin + ρ)m. Let {s1, . . . , sr−ρm} and {s′1, . . . , s′r−ρm} be two sequences of indices. The claim implies
that,

Pr
[
∀i ∈ [r − ρm], (cs)si = (c′s)s′i

]
≤ 2−(r−ρm) ≤ 2−(1−2δin)m .

By the union bound, the probability that cs and c′s share a common subsequence of length (r − ρm) is at
most (

r

r − ρm

)2

· 2−(1−2δin)m ≤ 2m·(2h(ρ)−(1−2δin)) ,

where we used
(

r
r−ρm

)
=
(

r
ρm

)
≤
(
m
ρm

)
. Now, the number of substrings of c (c′) of length ≥ (1− 2δin+ρ)m is

at most m2 · (2δin − ρ) and the number of codewords is 2Rinm. Thus, the probability that there exist c ̸= c′,
and substrings cs and c′s of c and c′, respectively, such that |cs|, |s′s| ≥ (1 − 2δin + ρ)m and they share a
common subsequence of length r − ρm is at most

22m·Rin ·m2 · 2m·(2h(ρ)−(1−2δin)) = 22m·(Rin+h(ρ)−(1−2δin)/2+
O(log m)

m) .

Thus, as long as
Rin + h (ρ)− (1− 2δin)/2 < 0 , (3.4)

there exists m′
0 ∈ N such that for every integer m ≥ m′

0, the probability that Proposition 3.3.1(1) does not
holds is smaller than 1/4.

To prove that Proposition 3.3.1(2) holds with high probability, consider any 0 ̸= v ∈ FRinm
2 . As G

was chosen uniformly at random, Gv is uniform random vector in Fm
2 . The probability that Gv contains a

substring of length δinm that has ≤ ρm ones is at most

m ·
ρm∑
i=0

(
δinm

i

)
2−δinm ≤ m(ρm+ 1) ·

(
δinm

ρm

)
· 2−δinm ≤ 2

δinm
(
−1+h

(
ρ

δin

)
+

O(log(m))
m

)
.

Thus, by the union bound, the probability that there exists v ∈ FRinm
2 \ {0}, such that Gv contains a

substring of length δinm with ≤ ρm ones is at most

2
m

(
Rin−δin+δinh

(
ρ

δin

)
+

O(log(m))
m

)
.

Hence, if

Rin − δin + δinh

(
ρ

δin

)
< 0 (3.5)

then there exists m′′
0 ∈ N such that for every integer m ≥ m′′

0 , the probability that C does not satisfy this
property is ≤ 1/4.

It can be verified that for δin = 1/6, ρ = 1/17, Rin = δin/16, and m0 = max(m′
0,m

′′
0), inequalities (3.4)

and (3.5) hold true and therefore the probability that a random code C satisfies both properties is at least
1/2 and the proposition follows.

Construction and decoding To explicitly construct codes as in Proposition 3.3.1 we simply go over all
possible linear codes and pick one that satisfies both properties. This requires exp(m2) many steps. In
our final construction we need m = O(log(1/εout)) and hence the cost of constructing the inner code is
exp(log2(1/εout)).

Similarly, we decode from deletions using the following brute force algorithm: Set L′ to be an empty list.
On input c̃, the algorithm runs over every codeword c ∈ C and checks if c̃ is a subsequence of c. If the answer
is yes and c is not in L′, then the algorithm adds c to L′. If L′ contains only c, then the algorithm returns
c. Otherwise, it returns ⊥. Clearly, the running time of this algorithm is exp(m) = poly(1/εout).

Remark 3.3.3. An important observation is that our decoding algorithm cannot output a wrong answer.
Indeed, if c̃ was obtained from c by performing any number of deletions, then c will be one of the codewords
in L′ (as c̃ is a subsequence of c).

38

3.3.2 Construction of our code

Let δout > 0 and εout < δout/1400 small enough. Let Cout ⊂ Fn
q2 be the code given in Theorem 3.1.9, with

parameters δ = δout and ε = εout. Recall that the rate of Cout is Rout = (1− δout)/4− εout and the code is
defined over the alphabet Fq2 where q = poly(1/εout). Denote k = Rout · n. Let Cin : {0, 1}m·Rin → {0, 1}m
be the code obtained in Section 3.3.1, where m is such that Rinm = log(q) (we pick εout small enough so
that m ≥ m0 as in Proposition 3.3.1).

Construction 3.3.4. The encoding works as follows. Given a message x ∈ Fk
q we:

1. Encode x using the outer code Cout to obtain σ = Cout(x). Denote

σ = ((σ1, S1 · σ1), . . . , (σn, Sn · σn)) .

2. Let 0(in) denote a string of 2δinm many zeroes. Encode every symbol (σi, Si · σi) using the inner code
to obtain (Cin(σi), Cin(Si · σi)) and place the string 0(in) between Cin(σi) and Cin(Si · σi). We refer to
those 0(in) strings as inner buffers. At the end of this step we have the string

Cin(σ1) ◦ 0(in) ◦ Cin(S1 · σ1) ◦ . . . ◦ Cin(σn) ◦ 0(in) ◦ Cin(Sn · σn) .

3. Let 0(out) denote a string of 5δinm many zeroes. Place the string 0(out) between every two adjacent
symbols of the form Cin(Si · σi) ◦ Cin(σi+1) to get

Cin(σ1) ◦ 0(in) ◦ Cin(S1 · σ1) ◦ 0(out) ◦ . . . ◦ Cin(σn) ◦ 0(in) ◦ Cin(Sn · σn) .

We refer to those 0(out) strings as outer buffers.

The encoding of x is the string

ENC(x) = Cin(σ1) ◦ 0(in) ◦ Cin(S1 · σ1) ◦ 0(out) ◦ . . . ◦ Cin(σn) ◦ 0(in) ◦ Cin(Sn · σn) .

Rate: The length of the codewords is 2mn+ 2δinmn+ 5δinm(n− 1) bits. Recalling that log(q) = m · Rin

we get

R =
log(qRoutn)

2mn+ 2δinmn+ 5δinm(n− 1)

>
RinRout

2 + 7δin
. (3.6)

The decoding algorithm is given in Algorithm 3.

3.3.3 Analysis

Proposition 3.3.5. The code defined in Construction 3.3.4 can correct from ρδoutmn adversarial deletions,
using Algorithm 3, in O(n3) time.

Proof. Let x ∈ Fk
q be a message and denote by σ := ((σ1, S1 · σ1), . . . , (σn, Sn · σn)), the outer codeword

corresponding to x, i.e., σ = Cout(x). We first note that if x is the zero message then since the adversary is
allowed to perform only deletions to ENC(x), the input to the algorithm is a single run of zeros. Therefore
the algorithm will output the zero message as required. Thus, from now on, we assume that x is not the
zero message.

We will upper bound the edit distance between σ and L that is obtained after performing step 3 of
Algorithm 3. If it holds that ED(σ, L) ≤ δoutn, then the decoding succeeds since our outer code, Cout, can
correct from δoutn insdel errors.

39

Algorithm 3: Decoding algorithm for Construction 3.3.4

input : Binary string y which is the output of the deletion adversary on ENC(x).
output: A message x′ ∈ Fk

q .

[0] Set L to be the empty list.
[1] if y is a single run of zeros then

output 0̄ ∈ Fk
q and return

end
[2] Every run of zeros of length at least 4δinm is identified as an outer buffer.

Let r1, . . . , rt be the strings between the outer buffers.
[3] for every rj do

Every run of zeros of length at least δinm and less than 4δinm is identified as an inner buffer.
if exactly 1 inner buffer was identified then

Denote by cj the string before the inner buffer and by c′j the string after the inner buffer. In

particular rj = cj ◦ (identified inner buffer) ◦ c′j .4
if m− 2δinm < |cj | ≤ m and m− 2δinm < |c′j | ≤ m then

a = Dec(cj) and b = Dec(c′j).

if a is not ⊥ and b is not ⊥ then
Add to L the tuple (a, b).

end

end

end

end
[4] Decode L using the algorithm of Cout given in Theorem 3.1.9.

Before we continue with the proof, we note that the outer codeword, σ, might have zero symbols (which
are of the form (0, 0)). Note that such a symbol is encoded, by the inner code, to a long run of zeros, which
is then interpreted by our algorithm as an outer buffer. As can be seen in the proof of Theorem 3.1.9 (see
Remark 3.2.4), we only care about nonzero symbols. Namely, if we denote by σ0 the string obtained from σ
by deleting all the zero symbols, then as long as ED(σ0, L) < δoutn, the decoding algorithm succeeds. Thus,
we do not need to insert these zero symbols to L.

Assume then that x ̸= 0. In Step 2 the decoding algorithm identifies outer buffers. We say that the
algorithm identified correctly the ith outer buffer if in Step 2 it identified an outer buffer that contains one
of the surviving symbols of the ith outer buffer of ENC(x), and that contains no symbol of any other outer
buffer of ENC(x). We call such an identified outer buffer a genuine outer buffer. Observe, that if the ith
outer symbol is σi = (0, 0), then the algorithm may identify the entire run between the (i− 1)th and the ith
outer buffers as a single outer buffer. In this case, too we say that this is a genuine outer buffer. The reason
for that will become clear during the analysis. In a nutshell, the reason for not treating it as an erroneous
buffer follows from the discussion above that shows that our algorithm ignores the zero outer symbol (see
Remark 3.2.4). In all other cases, we say that the decoder identified a fake outer buffer. We call an outer
buffer that was not identified as an outer buffer (because the adversary deleted many 0s from it) a corrupted
outer buffer.

After identifying the outer buffers in Step 2, we get t strings r1, . . . , rt. We distinguish between three
different types of rjs, depending on the outer buffers that the algorithm identified:

Type-1 rj – there exists an i ∈ [n− 1] such that the algorithm identified the (i− 1)th genuine outer buffer
before rj and the ith genuine outer buffer after rj . If j = 1 (t) then we require the algorithm to
identify only the right (left) outer buffer.

Type-2 rj – if the buffers surrounding rj are genuine outer buffers that do not correspond to consecutive
outer buffers in ENC(x).

40

Type-3 rj – if at least one of the buffers surrounding rj is a fake outer buffer.

We first study how the adversary can create a Type-1 rj that is not decoded correctly in Step 3. In what
follows, for a substring s of ENC(x), we denote with s̃ the remaining subsequence of s after the deletions
performed by the adversary.

Type-1 rj: In this case, rj is the form

rj = C̃in(σi) ◦ 0̃(in) ◦ ˜Cin(Siσi) ,

and we assume that the (original) ith buffer preceding rj and the (i+1)th buffer following rj were identified
by the algorithm.

We say that rj is a surviving outer symbol if a single inner buffer was identified inside rj (thus rj =
cj ◦ (identified inner buffer) ◦ c′j), and the decoding algorithm of the inner code returns σi and Si · σi when
given cj and c′j , respectively. If in Step 3 the algorithm adds to L the tuple (a, b) ̸= (σi, Siσi), when going
over rj , then we call rj a fake outer symbol. Note that the algorithm can also ignore rj in Step 3 and in this
case, we call rj an ignored outer symbol. For example, if rj contains several runs of zeros of length ≥ δinm,
then several inner buffers are identified inside rj , in which case the algorithm will not add anything to L.

Our objective is to show that the adversary has to perform at least ρm + 1 deletions to Cin(σi) ◦ 0(in) ◦
Cin(Siσi) in order to create a Type-1 rj that gets ignored by our algorithm and at least δinm+ ρm deletions
in order to create a Type-1 rj that is a fake outer symbol. We say that the algorithm identified correctly the
inner buffer if exactly one inner buffer was identified inside rj and at least one of the bits in the identified
inner buffer belongs to the original inner buffer.

The following claim shows that if the inner buffer was identified correctly and the adversary performed at
most ρm deletions to each of the inner codewords, then the decoding algorithm of the inner code successfully
decodes cj and c′j .

Claim 3.3.6. Assume that the algorithm identified correctly the inner buffer inside rj (thus, rj = cj ◦
(identified inner buffer)◦c′j). Then, as long as the adversary performed ≤ ρm deletions to Cin(σi) (Cin(Si·σi)),
the decoding algorithm of the inner code, outputs correctly σi (Si · σi) when given cj (c′j).

Proof. First, note that it may be the case that a string of 0s of an inner codeword (i.e., of Cin(σi) or of
Cin(Siσi)) are identified as a part of the inner or outer buffers. This is because our algorithm identifies
buffers whenever it encounters a long enough run of zeros. Therefore, if Cin(σi) starts with a run of zeros,
then this run is identified by our algorithm as part of the first outer buffer. The same phenomenon happens if
Cin(σi) ends with a run of zeros, only this time the zeroes are identified as part of the inner buffer. Denote by
Cin(σi)

′ the substring of Cin(σi) obtained by deleting the first and last run of zeros. By Proposition 3.3.1(2),
Cin(σi)

′ is of length ≥ (1− 2(δin − ρ))m.
Note that the adversary has the option to delete 1s from the beginning (or end) of Cin(σi)

′ and as a
result, further 0s will be identified as part of a buffer by the algorithm. For example, assume 11010010 to
be the first eight bits of Cin(σi)

′ and further assume that the adversary deletes the first three 1s from the
left. In this case, we have 11010010, where the red 1s were deleted by the adversary and the blue 0s are
interpreted, by the algorithm, as part of the left outer buffer. Denote by b1 the number of consecutive 1s
deleted from the beginning of Cin(σi) and by e1 the number of consecutive 1s deleted from the end of Cin(σi)
where b1 + e1 ≤ ρm, then, the number of zeros merged to the buffer is at most

⌈(b1 + 1)/(ρm+ 1)⌉ (δinm− ρm) + ⌈(e1 + 1)/(ρm+ 1)⌉ (δinm− ρm) = 2(δinm− ρm) .

Denote the resulting string (after removing the first and last runs of 0s that were created by the adversary
after deleting b1+e1 1s) by Cin(σi)

′′ and note that Cin(σi)
′′ is a substring of Cin(σi) of length ≥ (1−2δin+ρ)m.

Now, the adversary can perform another ρm− (b1 + e1) deletions to the rest of the bits of Cin(σi)
′′. In total,

LCS(cj , Cin(σi)
′′) ≥ |Cin(σi)

′′|−ρm. Proposition 3.3.1(1) guarantees that we decode this corrupted codeword
successfully.

41

Thus, in order for the adversary to make the algorithm ignore rj or interpret it as a fake outer symbol,
it must either

Case 1: delete enough 0s so that no inner buffer is identified, or

Case 2: delete many 1s so that more than one inner buffer is identified, or

Case 3: delete bits so that only a single inner buffer is identified, but that the decoding algorithm fails.

We study each of these cases separately.

Analysis of Case 1: In this case, the adversary must have deleted at least δinm+ 1 bits from the original
inner buffer. In this case, rj is ignored by the algorithm.

Analysis of Case 2: In this case, the algorithm identifies (at least) two inner buffers in rj , and as a result,
ignores it. Proposition 3.3.1(2) implies that the adversary must delete at least ρm + 1 many 1s from an
inner codeword in order to create a second long run of 0s that is interpreted as an inner buffer.

Analysis of Case 3: We now assume that the algorithm identified a single inner buffer. If this inner buffer
does not contain any bit of the original inner buffer, then, by the two previous cases, the adversary must
have deleted at least δinm+ 1 many 0 from the original inner buffer and additionally at least ρm+ 1 many
1s from an inner codeword. In total, at least δinm+ ρm+ 2 many bits were deleted. In this case, either rj
is ignored by the algorithm, or it becomes a fake outer symbol.

If the algorithm correctly identified the inner buffer, then Claim 3.3.6 implies that, for the algorithm
to fail to decode, the adversary must have deleted more than ρm bits inside Cin(σi) or Cin(Si · σi). In
particular, the adversary must perform more than ρm deletions for the decoding to fail. Notice that in this
case, the decoding algorithm of the inner code will output ⊥ and will not return a fake outer symbol.

To conclude, if the adversary wishes to create a Type-1 rj that is an ignored outer symbol, it needs to
perform at least ρm+ 1 deletions. In order to create a Type-1 rj that is a fake outer symbol, the adversary
needs to delete at least δinm+ ρm+ 2 many bits.

Observe that an ignored outer symbol increases ED(σ0, L) by 1 since the corresponding outer symbol,
(σi, Si · σi), was not added to L. A Type-1 rj that is a fake outer symbol increases ED(σ0, L) by 2 since
instead of the original outer symbol, a fake outer symbol is added to L. Thus, the number of deletions that
the adversary has to “pay” in order to increase ED(σ0, L) by 1, in the case of Type-1 rj , is at least

min

{
ρm+ 1,

δinm+ ρm+ 2

2

}
= ρm+ 1 ,

where the equality follows as δin > 2.5ρ. Thus, in the case of Type-1 rj , it is more “economical” for the
adversary to make the algorithm ignore it rather than make it a fake outer symbol.

Type-2 rj: In this case, we assume that rj is such that the outer buffer identified before rj and the outer
buffer identified after rj are genuine but not consecutive (and there is no fake outer buffer in between).
Assume that the outer buffer before rj corresponds to the i1th outer buffer in ENC(x) and that the outer
buffer after rj corresponds to the i2th original outer buffer. In particular, the i2−i1−1 outer buffers between
the i1th and i2th were corrupted by the adversary.

We now consider how many deletions the adversary had to perform in order for the algorithm to return
a fake outer symbol. Note that the substring of the original codeword that starts at the first 1 following the
i1th outer buffer and ends at the last 1 preceding the i2th outer buffer is of length at least

2((1− δin + ρ) + 2δin + 1)m+ 5δinm+ (i2 − i1 − 2)(2 + 7δin)m

= (i2 − i1)(2 + 7δin)m− (7δin − 2ρ)m .

42

Observe that for the algorithm to not ignore rj we must have that |rj | < 2m+4δinm. It follows that for the
algorithm not to ignore rj , the adversary must have deleted at least

(i2 − i1)(2 + 7δin)m− (7δin − 2ρ)m− (2 + 4δin)m = (i2 − i1)(2 + 7δin)m− (2 + 11δin − 2ρ)m

many bits. Creating such a fake outer symbol increases ED(σ0, L) by i2− i1+1 as it corresponds to deleting
the outer symbols in locations i1, . . . , i2 − 1 and an insertion of the fake outer symbol.

If the adversary only corrupted the outer buffers between the i1th and the i2th outer buffers, without
creating a fake outer symbol, then it must have deleted at least (i2 − i1 − 1)(δinm+ 1) many 0s. Indeed, to
corrupt a single outer buffer (at least) δinm+1 many 0s have to be deleted. Such a behaviour by the adversary
increases ED(σ0, L) by i2 − i1 as it is equivalent to deleting the outer symbols in locations i1, . . . , i2 − 1.

Thus, the number of deletions that the adversary has to “pay” in order to increase ED(σ0, L) by 1, in
the case of Type-2 rj , is at least

min

{
(i2 − i1)(2 + 7δin)m− (2 + 11δin − 2ρ)m

(i2 − i1 + 1)
,
(i2 − i1 − 1)(δinm+ 1)

(i2 − i1)

}
=

(i2 − i1 − 1)(δinm+ 1)

(i2 − i1)
.

Observe that (i2−i1−1)(δinm+1)
(i2−i1)

> ρm+ 1 and hence the adversary has to make more deletions in the case of

Type-2 rj than in the case of Type-1 rj in order to increase ED(σ0, L) by 1.

Type-3 rj: Let us assume without loss of generality that the outer buffer to the left of rj is a fake outer
buffer.

To create a fake outer buffer, the adversary has to create a run of 0s of length ≥ 4δinm such that all the
bits in this run do not belong to any outer buffer in ENC(x) (or that belong to two different outer buffers
in ENC(x). We treat this case later). The adversary faces two options; it can either merge many 0s to an
inner buffer or create a run of 0s of length ≥ 4δinm inside an inner codeword. By Proposition 3.3.1(2), the
second case requires at least 4ρm+4 many deletions. In the first case, the adversary needs to merge ≥ 2δinm
many 0s to an inner buffer. We claim that in this case, it must delete more than ρm + 1 many 1s from
the inner codewords. Indeed, by Proposition 3.3.1(2), any δinm coordinates of an inner codeword contain at
least ρm+1 many 1s. As at least δinm 0s must come from either the inner codeword to the left of the inner
buffer or from the one to the right of the inner buffer, the claim follows.

Now that we know the “cost” of creating a fake outer buffer, we shall analyze several cases. Denote with
i1 the index such that the last bit of the fake outer buffer came from the encoding of (σi1 , Si1 · σi1).

1. The outer buffer to the right of rj is a genuine outer buffer corresponding to the (i1)th outer buffer in
ENC(x): In this case it is not hard to verify that |cj | + |c′j | < 2m − 4δinm and rj gets ignored. This

increases ED(σ0, L) by 1, and, by the analysis above, the adversary had to make at least ρm+1 many
deletions.

2. The outer buffer to the right of rj is a genuine outer buffer, but not the i1th one: Let us assume that
the genuine outer buffer to the right of rj is the i2th outer buffer (observe that we must have i2 > i1).
We now consider two subcases:

(a) The algorithm ignored rj : As all the outer buffers between the i1th and the i2th were corrupted,
the adversary must have deleted at least (i2− i1)(δinm+1) many 0s. This increases ED(σ0, L) by
at most i2− i1+1 as it causes the deletion of all symbols in locations i1+1, . . . , i2, and potentially
also the i1th symbol. Thus, the average cost of increasing the edit distance by 1 in this case is at

least (i2−i1)(δinm+1)
i2−i1+1 > (δinm+ 1)/2 > ρm+ 1.

(b) The algorithm decoded rj to a fake outer symbol: Similarly to the analysis of Type-2 rj , we see
that in this case, as the algorithm has to identify a single inner buffer inside rj , and the length of
rj is |rj | ≤ 2m+ 4δinm, the adversary must have deleted at least

(i2 − i1)(7δin + 2)m− (2 + 4δin)m = (i2 − i1 − 1)(7δin + 2)m+ 3δinm

43

many bits. This increases ED(σ0, L) by at most i2 − i1 + 2 since (as in the previous case) this
caused at most i2 − i1 + 1 many deletions and a single insertion. Thus, the average cost of

increasing the edit distance by 1 in this case is at least (i2−i1−1)(7δin+2)m+3δinm
i2−i1+2 ≥ δinm > ρm+1.

3. The outer buffer to the right of rj is also a fake outer buffer: Let us assume that the outer buffer to
the right of rj was created inside the encoding of the i2th outer symbol. We analyze two cases:

(a) i2 = i1: In this case, it is not hard to see that rj is too short and hence gets ignored by the
algorithm. This increases ED(σ0, L) by 1. Note that by the analysis above, the adversary had to
make at least (4ρm+ 4) + (ρm+ 1) = 5ρm+ 5 many deletions.

(b) i2 > i1: Similar calculations as in the case of Type-2 rj show that in this case, the adversary has
to make more than ρm+ 1 many deletions in order to increase ED(σ0, L) by 1. Indeed, we recall
that at least ρm+1 deletions occurred to create the outer buffer to the left of rj (we do not charge
anything for the right one in order to avoid double-counting). Now let us assume that the first
bit in the second fake outer buffer came from (σi2 , Si2 · σi2). It follows that in order to corrupt
all the outer buffers between the i1th and the (i2 − 1)th outer buffers, the adversary must delete
at least (i2 − i1)δinm many bits. In this case, if rj is not interpreted as a fake outer symbol, then
ED(σ0, L) grew by at most i2 − i1 + 1. If rj was decoded to a fake outer symbol, then ED(σ0, L)
grew by at most i2 − i1 + 2. Thus, the average cost of increasing the edit distance by 1 in this

case is at least (i2−i1)δinm+ρm+1
i2−i1+2 > (2.5(i2−i1)+1)ρm

i2−i1+2 ≥ 3.5
3 ρm > ρm+1 (the first inequality follows

since δin > 2.5ρ).

Finally, we note that if the fake outer buffer before rj contains bits from two different original

outer buffers, the i1th and the i2th, then at least 2(i2 − i1)
(1−δ+ρ)ρ

δ m many 1s had to be deleted.
Such an operation increases the edit distance by at most i2 − i1. In addition, we have to repeat the
analysis above and take into consideration the cost of creating the buffer to the right of rj , and the
additional effect of rj on the edit distance (i.e., whether rj was ignored or decoded as a fake outer sym-
bol, etc.). It is clear that in this case, the cost of increasing the edit distance by 1 is much larger than ρm+1.

In conclusion, in all cases, in order to increase ED(σ0, L) by 1, the adversary has to make at least ρm+1
many deletions. Since the adversary can make at most δoutρmn deletions, it follows that ED(σ0, L) < δoutn.
Hence, by the assumption on the outer code, Step 4 of Algorithm 3 returns the correct message. This
completes the correctness part of Proposition 3.3.5. All that is left is to analyze the running time complexity
of the algorithm.

Running time: The claim about the running time follows by first noting that Step 2, in which we identify
the outer buffers, runs in linear time. Secondly, for each rj , the run time of Step 3 is determined by the cost of
the brute force decoding algorithm. This algorithm runs in exponential time in m, where m = poly(1/εout).
Hence, Step 3 runs in time n · poly(1/εout). Finally, according to Theorem 3.1.9, the decoding algorithm of
the outer code runs in time O(n3). In conclusion, the running time of the decoding algorithm is O(n3). This
concludes the proof of Proposition 3.3.5.

3.3.4 Proof of Theorem 3.1.10

Proposition 3.3.5 implies that the code constructed in Construction 3.3.4 can decode from ρδoutmn many
deletions. By Equation (3.6), its rate is RinRout

2+7δin
.

Recall that εout < δout/1400, δin = 1/6, ρ = 1/17, Rout = (1− δout)/4− εout and Rin = δin/16. It follows

44

that the rate of our code is

R ≥ RinRout

2 + 7δin

=
1

304
·
(
1− δout

4
− εout

)
≥ 1

304
·
(
1− 1.0029δout

4

)
,

and it can correct from more than δ = δoutρ/(2 + 7δin) > δout/53.84 fraction of adversarial deletions. Thus,
we conclude that the final rate-error trade-off is

R ≥ 1− 54 · δ
1216

.

3.4 Open questions

In this chapter, we studied linear codes that can handle insdel errors. Naturally, our main goal was to
construct codes that get close (or match) the half-Singleton bound. Over constant size and even binary
alphabets, we constructed efficient linear codes that have significantly higher rates compared to previous
constructions. However, we were not able to achieve the half-Singleton bound, and this is left as an open
question for future work.

45

Chapter 4

Reed–Solomon codes correcting
insertions and deletions

4.1 Introduction

In this chapter, we first prove that there are RS-codes that achieve the half-Singleton bound. In other
words, (some) RS-codes are optimal also against insdel errors. We also give explicit constructions (i.e. sets
of evaluation points) that define RS-codes that achieve this bound. As the field sizes that we get grow very
fast, our construction runs in polynomial time only for very small values of k. We also explicitly construct
2-dimensional RS-codes over a field of size smaller than all previous known constructions. Unfortunately, we
do not have efficient decoding algorithms, and we leave this as an open problem for future research.

4.1.1 Previous results

The performance of RS-codes against insdel errors was studied much earlier than the work of Cheng et
al. [CGHL21]. To the best of our knowledge, Safavi-Naini and Wang [SNW02] were the first to study the
performance of RS-codes against insdel errors. They gave an algebraic condition that is sufficient for an
RS-code to decode from insdel errors, yet they did not provide any construction. In fact, in our work, we
consider an almost identical algebraic condition, and by simply using the Schwartz-Zippel-DeMillo-Lipton
lemma [Sch80, Zip79, DL78], we prove that there are RS-codes that meet this condition and, in addition,
achieve the half-Singleton bound. In particular, RS-codes are optimal for insdel errors (see discussion in
Section 4.2). Wang, McAven, and Safavi-Naini [WMSN04] constructed a [5, 2] RS-code capable of correcting
a single deletion. Then, in [TSN07], Tonien and Safavi-Naini constructed an [n, k] generalized-RS-codes
capable of correcting from logk+1 n− 1 insdel errors. Similar to our results, they did not provide an efficient
decoding algorithm.

In another line of work Duc, Liu, Tjuawinata, and Xing [DLTX19], Liu and Tjuawinata [LT21], Chen
and Zhang [CZ21], and Liu and Xing [LX21] studied the specific case of 2-dimensional RS-codes.

In [DLTX19, LT21], the authors presented constructions of [n, 2] RS-codes that for every ε > 0 can
correct from (1− ε) · n insdel errors, for codes of length n = poly(1/ε) over fields of size Ω(exp((log n)1/ε))
and Ω(exp(n1/ε)), respectively. In [DLTX19, CZ21], the authors present constructions of two-dimensional
RS-codes that can correct from n− 3 insdel errors where the field size is exponential in n. After a draft of
this work appeared online, Liu and Xing [LX21] constructed, using a different approach than ours, a two
dimensional RS-codes that can correct from n− 3 insdel errors, over a field of size O(n5). Specifically, they
proved the following.

Theorem 4.1.1. [LX21, Theorem 4.8] Let n ≥ 4. If q > n(n−1)2(n−2)2

4 , then there is an [n, 2]q RS-code,
constructable in polynomial time, that can decode from n− 3 insdel errors.

46

4.1.2 Our results

First, we prove that there are RS-codes that achieve the half-Singleton bound. Namely, they are optimal
linear codes for insdel errors.

Theorem 4.1.2. Let k and n be positive integers such that 2k − 1 ≤ n. For q = O(n4k−2) there exists
an [n, k]q RS-code defined by n distinct evaluation points α1, . . . , αn ∈ Fq, that can decode from n − 2k + 1
adversarial insdel errors.

The proof of Theorem 4.1.2 uses a standard union bound combined with the Schwartz-Zippel-DeMillo-
Lipton lemma. By using the Lovász-local-lemma, we were able to improve the dependence on the field size.
Specifically, we show the following.

Theorem 4.1.3. For integers n and k < n/9, there exists an [n, k]q RS-code, where q =

O

(
k4 ·

(
4en
4k−3

)4k−3
)

is a prime power, that can decode from n− 2k + 1 adversarial insdel errors.

Observe that these codes achieves the half Singleton bound: their rate is R = k/n = (1− δ)/2+ o(1) and
their minimal relative distance is δ = (n− 2k + 1)/n.

Theorem 4.1.2 and Theorem 4.1.3 are existential results and do not give explicit constructions. Using
ideas from number theory and algebra, we construct RS-codes that can decode from n− 2k + 1 adversarial
insdel errors, in particular, they achieve the half-Singleton bound. Specifically,

Theorem 4.1.4. Let k and n be positive integers, where 2k−1 ≤ n. There is a deterministic construction of

an [n, k]q RS-code that can correct from n−2k+1 insdel errors where q = O
(
nk2·((2k)!)2

)
. The construction

runs in polynomial time for k = O(log(n)/ log log(n)).

We note that for k = ω(log(n)/ log log(n)) the field size is exp(nω(1)) and in particular, there is no efficient
way to represent arbitrary elements of Fq in this case.

As discussed before, special attention was given in the literature to the case of RS-codes of dimension 2.
By using Sidon spaces from [RRT17], we explicitly construct a family of [n, 2]q RS-codes that can decode
from n − 3 insdel errors for q = O(n4). The field size of this explicit construction matches the field size of
the non-explicit randomized construction given in Theorem 4.1.3.

Theorem 4.1.5. For any n ≥ 4, there exists an explicit [n, 2]q RS-code that can correct from n − 3 insdel
errors, where q = O(n4).

We also prove a (very) weak lower bound on the field size.

Proposition 4.1.6. Any [n, k]q RS-code that can correct from n − 2k + 1 worst case insdel errors must
satisfy

q ≥ 1

2
·
(

n

(2k − 1)(k − 1)

) 2k−1
k−1

.

While for large values of k, this bound is meaningless, it implies that when k = 2, the field size must be
Ω(n3). Thus, the construction given in Theorem 4.1.5 is nearly optimal. The gap between the field size in
our construction and the one implied by the lower bound raises an interesting question: what is the minimal
field size q for which an optimal [n, 2]q RS-code exists?

4.1.3 Proof idea

As explained above, we first provide an algebraic condition that is sufficient for n evaluation points to
define an RS-code that can decode from insdel errors. This condition requires that a certain set of nO(k)

matrices, determined by the evaluation points, must all have full rank. Then, a simple application of the
Schwartz-Zippel-DeMillo-Lipton lemma [Sch80, Zip79, DL78] implies the existence of good evaluation points
over fields of size nO(k). To obtain a deterministic construction, we show that by going to much larger field

47

size, one can find evaluation points satisfying the full-rank condition. While the field size needs to be of size

roughly Ω(nkk

), we note that, for not too large values of k, it is of exponential size, and in this case, our
construction runs in polynomial time. A key ingredient in the analysis of this construction is our use of the
‘abc theorem’ for polynomials over finite fields [VW03]. To get the improved bound of Theorem 4.1.3 we
study the dependencies between the different matrices and then rely on the Lovász-local-lemma to obtain
an improved upper bound on the field size.

For the case of k = 2, we use a different idea that gives a better field size than the one implied by the
probabilistic argument above. We do so by noting that in this case the full-rank condition can be expressed
as the requirement that no two different triples of evaluation points (x1, x2, x3) and (y1, y2, y3) satisfy

y1 − y2
x1 − x2

=
y2 − y3
x2 − x3

.

This condition is reminiscent of the condition behind the construction of Sidon spaces of [RRT17], and
indeed, we build on their construction of Sidon spaces to define good evaluation points in a field of size
O(n4).

4.1.4 Organization

The chapter is organized as follows. In Section 4.2, we prove Theorem 4.1.2 and Theorem 4.1.3. In Section 4.3,
we prove Theorem 4.1.4. Finally, in Section 4.4, we prove Theorem 4.1.5 and Proposition 4.1.6. Section 4.5
is devoted to conclusion and open questions.

4.2 Optimal Reed-Solomon codes exist

In this section, we prove that there are RS-codes that achieve the half-Singleton bound. The proofs will
follow by standard analysis of the LCS between any two distinct codewords.

We begin by reformulating the condition on the maximum length of an LCS as an algebraic condition
(invertibility of certain matrices). Then we show that an RS-code that satisfies this condition would have
the maximum possible edit distance and hence would be able to decode from the maximum number of insdel
errors. We remark that a similar approach already appeared in [SNW02, Section 2.2] and we shall repeat
some of the details here.

4.2.1 An algebraic condition

The following proposition is the main result of this section as it provides a sufficient condition for an RS-code
to recover from the maximum number of insdel errors. We first make the following definitions. We say that
a vector of indices I ∈ [n]s is an increasing vector if its coordinates are monotonically increasing, i.e., for any
1 ≤ i < j ≤ s, Ii < Ij , where Ii is the ith coordinate of I. For a codeword c of length n and an increasing
vector I, let cI denote the restriction of c to the coordinates with indices in I, i.e., cI = (cI1 , . . . , cIs). For
two vectors I, J ∈ [n]2k−1 with distinct coordinates we define the following variant of a vandermonde matrix
of order (2k − 1)× (2k − 1) in the formal variables X = (X1, . . . , Xn):

VI,J(X) =

1 XI1 . . . Xk−1

I1
XJ1 . . . Xk−1

J1

1 XI2 . . . Xk−1
I2

XJ2 . . . Xk−1
J2

...
... . . .

...
... . . .

...

1 XI2k−1
. . . Xk−1

I2k−1
XJ2k−1

. . . Xk−1
J2k−1

 . (4.1)

Proposition 4.2.1. Consider the [n, k]q RS-code defined by an evaluation vector α = (α1, . . . , αn). If for
every two increasing vectors I, J ∈ [n]2k−1 that agree on at most k−1 coordinates, it holds that det(VI,J(α)) ̸=
0, then the code can correct any n−2k+1 insdel errors. Moreover, if the code can correct any n−2k+1 insdel
errors, then the only possible vectors in Kernel (VI,J(α)) are of the form (0, f1, . . . , fk−1,−f1, . . . ,−fk−1).

48

Proof. Assume that the claim does not hold; therefore, there exist two distinct codewords c ̸= c′ whose LCS
is at least 2k − 1, i.e., cI = c′J for two increasing vectors I, J ∈ [n]2k−1. Assume further that c and c′ are
the encodings of the polynomials f =

∑
i fix

i and g =
∑

i gix
i of degree less than k, respectively. If Iℓ = Jℓ

for at least k coordinates, then for every such ℓ

f(αIℓ) = cIℓ = c′Jℓ
= g(αIℓ) .

Hence f ≡ g, in contradiction to the fact that c ̸= c′. Thus, we can assume that I, J agree on at most k− 1
coordinates. In this case, VI,J(α) is singular, since the vector (f0 − g0, f1, . . . , fk−1,−g1, . . . ,−gk−1)

t is in
its right kernel, which contradicts our assumption. From Lemma 3.1.3 it follows that the code can correct
n− 2k + 1 insdel errors.

To prove the moreover part note that the argument above implies that if the code can correct any n−2k+1
insdel errors and f ̸= g then the vector (f0 − g0, f1, . . . , fk−1,−g1, . . . ,−gk−1) is not in the kernel.

In [SNW02] Safavi-Naini and Wang identified (almost) the same condition (see Remark 4.2.2 below) and
used it in their construction of traitor tracing schemes. Interestingly, the later work of [TSN07], which gave
a construction of RS-codes capable of decoding from logk(n+1)− 1 insdel errors, did not use this condition.
In particular, as far as we know, prior to this work the condition in Proposition 4.2.1 was not used in order
to show the existence of optimal RS-codes against insdel errors.

The following remark explains the difference between Proposition 4.2.1 and the condition in [SNW02].

Remark 4.2.2. The main difference between the condition presented in [SNW02] and ours, is that they
considered a 2k × 2k matrix and a generalized RS-code. Given evaluation points (α1, . . . , αn) and a vector
with nonzero coordinates (v1, . . . , vn) ∈ Fn

q , the generalized [n, k]q RS-code is defined as the set of all vectors
(v1 · f(α1), . . . , vn · f(αn)), such that deg(f) < k. The matrix studied in [SNW02] is:

V v
I,J(X) =

vI1 vI1 ·XI1 . . . vI1 ·Xk−1

I1
vJ1

vJ1
·XJ1

. . . vJ1
·Xk−1

J1

vI2 vI2 ·XI2 . . . vI2 ·Xk−1
I2

vJ2
vJ2

·XJ2
. . . vJ2

·Xk−1
J2

...
...

...
... . . .

...

vI2k vI2k ·XI2k . . . vI2k ·Xk−1
I2k

vJ2k
vJ2k

·XJ2k
. . . vJ2k

·Xk−1
J2k

 . (4.2)

In our matrix, we save a coordinate (which leads to optimal codes) as we do not have two columns for the
free terms of f and g. In contrast, the matrix (4.2) has a column for the free term of f (the first) and a
column for the free term of g (the column (vJ1 , . . . , vJ2k

)). This also leads to the requirement that I and J
are of length 2k (they can still agree on at most k − 1 indices).

4.2.2 Existence using Schwarz-Zippel-DeMillo-Lipton lemma

In this section, we show that over large enough fields, there exist RS-codes that attain the half-Singleton
bound. Specifically, we show that there exist RS-codes that can decode from a δ fraction of insdel errors
and have rate R = (1− δ)/2 + o(1). For convenience, we repeat the statement of Theorem 4.1.2.

Theorem 4.1.2. Let k and n be positive integers such that 2k − 1 ≤ n. For q = O(n4k−2) there exists
an [n, k]q RS-code defined by n distinct evaluation points α1, . . . , αn ∈ Fq, that can decode from n − 2k + 1
adversarial insdel errors.

For a vector I and an element a, we write a ∈ I if a appears as one of the coordinates of I; otherwise,
we write a /∈ I.

Lemma 4.2.3. Let s ≥ 2 be an integer and I, J ∈ [n]s two increasing vectors that do not agree on any
coordinate, i.e., Ii ̸= Ji for all 1 ≤ i ≤ s. Then, there are two distinct indices i ̸= j ∈ [s] such that Ii /∈ J
and Jj /∈ I.

Proof. W.l.o.g. assume that I1 < J1. Since J is an increasing vector, I1 /∈ J . In addition, some coordinate
among {J1, . . . , Js} does not appear in {I2, . . . , Is}, and any such coordinate is clearly different from I1.

49

Proposition 4.2.4. Let I, J ∈ [n]2k−1 be two increasing vectors that agree on at most k − 1 coordinates.
Then, in the expansion of det(VI,J(X)) as a sum over permutations, there is a monomial that is obtained at
exactly one of the (2k− 1)! different permutations. In particular, its coefficient is ±1, depending on the sign
of its corresponding permutation. Consequently, det(VI,J(X)) ̸= 0.

Proof. We use induction on k to prove the claim. For k = 1, VI,J(X) = 1 and the result follows. For
the induction step, assume that the claim holds for every 1 ≤ ℓ ≤ k − 1. Consider two coordinates i, j,
determined as follows. If I and J agree on some coordinate, say j, then we set i to be such that Ii /∈ J . If
they do not agree on any coordinate, then we let i, j be the two coordinates guaranteed by Lemma 4.2.3.

Next, in the determinant expansion of VI,J as a sum of (2k − 1)! monomials, collect all the monomials
that are divisible by Xk−1

Ii
Xk−1

Jj
, and write them together as

Xk−1
Ii

Xk−1
Jj

f(X),

for some polynomial f in the variables (Xℓ : ℓ ∈ (I \ {Ii}) ∪ (J \ {Jj})). Note that the choice of i and j
guarantees that such monomials exist. Observe that any monomial in the determinant expansion of VI,J

that is divisible by Xk−1
Ii

Xk−1
Jj

must be obtained by picking the (i, k) and the (j, 2k−1) entries in the matrix

(4.1). Hence, f equals the determinant of the submatrix V ′
I,J obtained by removing rows i, j and columns

k, 2k−1 from VI,J . Note that V ′
I,J is a matrix satisfying the conditions of the claim: it is a (2k−3)×(2k−3)

matrix defined by two increasing vectors of length 2k− 3 that agree on at most k− 2 coordinates. Indeed, i
and j were chosen so that by removing them we remove one agreement if such existed.

Hence, by the induction hypothesis, det(V ′
I,J) has a monomial m (with a ±1 coefficient) that is uniquely

obtained among the (2k − 3)! different monomials. Therefore, Xk−1
Ii

Xk−1
Jj

m is a monomial of Xk−1
Ii

Xk−1
Jj

f
with a ±1 coefficient. Since there is no other way to obtain this monomial in the determinant of VI,J , this
monomial is uniquely obtained in det(VI,J), and the result follows.

We now state the Schwarz-Zippel-DeMillo-Lipton lemma and then prove Theorem 4.1.2.

Lemma 4.2.5 (Schwarz-Zippel-DeMillo-Lipton lemma). [Sch80, Zip79, DL78] Let F ∈ Fq[X1, . . . , Xn] be
a nonzero polynomial of total degree d and let S ⊆ Fq. If we pick α1, . . . , αn independently and uniformly
from S, then

Pr [F (α1, . . . , αn) = 0] ≤ d

|S|
.

Proof of Theorem 4.1.2. Define

F (X) =
∏
i<j

(Xi −Xj)
∏
I,J

det(VI,J(X)),

where the second product runs over all possible pairs of increasing vectors that agree on at most k − 1
coordinates. Clearly, by Proposition 4.2.4, F (X) is a nonzero polynomial in the ring Z[X]. Next, we make
two observations regarding the polynomial F . First, since there are

(
n

2k−1

)
increasing vectors, and the degree

of each det(VI,J(X)) is at most k(k − 1), it follows that

deg(F) ≤ n2 +

(
n

2k − 1

)2

· k(k − 1) < n4k−2 .

Second, as each det(VI,J(X)) is a nonzero polynomial with nonzero coefficients bounded in absolute
values by (2k − 1)!, the absolute value of any nonzero coefficients of F is at most

((2k − 1)!)(
n

2k−1)
2

≤ ((2k − 1)!)
n4k−2

((2k−1)!)2 < en
4k−2

.

We claim that there is a prime q in the range [n4k−2, 2n4k−2] that does not divide at least one of the
nonzero coefficients of the polynomial F . Indeed, consider a nonzero coefficient of F , and assume towards

50

a contradiction that it is divisible by all such primes. Then, by the growth rate of the primorial function,

the absolute value of the coefficient is Ω(en
4k−2(1+o(1))), in contradiction. Now, it is easy to verify that F

is also a nonzero polynomial in Fq[X], since the monomial whose nonzero coefficient is not divisible by q
does not vanish. Therefore, since q is strictly greater than the degree of F , we can apply Lemma 4.2.5 with
S = Fq and get that there exists an assignment α = (α1, . . . , αn) ∈ Fn

q to X for which F (α) ̸= 0 mod q.
This assignment clearly corresponds to n distinct evaluation points, which by Proposition 4.2.1, define an
[n, k]q RS-code that can correct any n− 2k + 1 worst-case insdel errors, as claimed.

We remark again that Theorem 4.1.2 merely shows the existence of [n, k]q RS-codes that can decode from
the maximum number of insdel errors over fields of size q = O

(
n4k−2

)
. Further, the above argument is a

standard union bound over all variable assignments that make the matrix defined in (4.1) singular. This by
no means implies that such a large finite field is necessary. For example, a similar union-bound argument
for showing the existence of MDS codes would require an exponentially large field for codes with a constant
rate. In contrast, it is well-known that MDS codes over fields of linear size exist (e.g., RS-codes). It would be
interesting to construct codes with the same or even better parameters than the ones given in Theorem 4.1.2.
In Section 4.2.3 we achieve such improvement using the Lovász-local-lemma, but we still don’t know whether
this is the best possible result. We thus leave it as an open question for further research.

We do not have explicit constructions that match the bound of Theorem 4.1.2, and obtaining such
constructions is another interesting open problem. Nonetheless, in Section 4.3, we provide a deterministic
construction of an RS-code for any admissible n, k, at the expense of a larger field size than the one guaranteed
by Theorem 4.1.2.

4.2.3 Existence using the Lovász-local-lemma

In this section we prove Theorem 4.1.3, which improves on the required field size from Theorem 4.1.2. More
precisely, we show that for large enough n and any k < n/9, there is an [n, k]q RS-code that can correct
from any n− 2k + 1 insdel errors with q = O(k4 · (4en/(4k − 3))4k−3). For constant dimensional codes, the
field size is of order O(n4k−3), and in particular, for k = 2 the field size is of order O(n5). For convenience,
we restate the theorem.

Theorem 4.1.3. For integers n and k < n/9, there exists an [n, k]q RS-code, where q =

O

(
k4 ·

(
4en
4k−3

)4k−3
)

is a prime power, that can decode from n− 2k + 1 adversarial insdel errors.

As in the previous section, we choose α uniformly at random from Fn
q . The difference is that instead of

using the Schwarz-Zippel-DeMillo-Lipton lemma we apply the Lovász-local-lemma [EL73] to show that with
positive probability the condition in Proposition 4.2.1 holds. Finally, we make a small adjustment in order
to guarantee that the evaluation points αi are all distinct. The full details of the proof are given next, but
first we recall the Lovász-local-lemma.

Theorem 4.2.6. [EL73] Let E1, . . . , EN be events such that Pr[Ei] ≤ p for all i ∈ [N], every event Ei

depends on at most d other events and 4pd ≤ 1. Then,

Pr

[
N∧
i=1

Ei

]
> 0 .

We begin with some definitions and notations. Let S be the set containing all pairs (I, J) where I, J ∈
[n]2k−1 are two increasing vectors that agree on at most k − 1 coordinates. Denote by EI,J the (bad) event
that det(VI,J(α)) = 0, where VI,J(α) is the matrix defined in (4.1). We shall also use the notation I ∪ J to
refer to the set of indices that appear in I or in J .

Let α be a vector chosen uniformly at random from Fn
q . The following claim shows that an event EI,J

is independent from a set of {EI′,J′} as long as I ∪ J is disjoint from all I ′ ∪ J ′ for which EI′,J′ ∈ {EI′,J′}.

51

Claim 4.2.7. Fix (I, J) ∈ S and define

TI,J := {(I ′, J ′) ∈ S | |(I ∪ J) ∩ (I ′ ∪ J ′)| = 0} .

Then, the event EI,J is mutually independent from the set of events SI,J = {EI′,J′ | (I ′, J ′) ∈ TI,J}

Proof. Since I ∪J is disjoint from all I ′ ∪J ′, (I ′, J ′) ∈ TI,J , the matrix VI,J(X) does not share any variables
with any of the matrices VI′,J′(X) for (I ′, J ′) ∈ TI,J . The result follows since α chosen uniformly at random
from Fn

q .

Claim 4.2.8. An event EI,J is mutually independent of all but at most O

(
k2 ·

(
4en
4k−3

)4k−3
)

of the events

EI′,J′ .

Proof. By Claim 4.2.7, the number of events EI′,J′ that are not independent of EI,J is at most(
|I ∪ J |

1

)
·

4k−2∑
|I′∪J′|=2k

((
n

|I ′ ∪ J ′| − 1

)
·
(
|I ′ ∪ J ′|
2k − 1

)2
)

(4.3)

where
(|I∪J|

1

)
stands for choosing a shared index,

(
n

|I′∪J′|−1

)
is an upper bound on the number of ways to

choose the rest of the indices in I ′ ∪ J ′, and
(|I′∪J′|

2k−1

)2
is an upper bound on the number of ways to choose I ′

and J ′ out of I ′ ∪ J ′. Note that the size of I ′ ∪ J ′ (and I ∪ J) must be at least 2k and at most 4k − 2 and
thus we have the sum in (4.3). For 4k − 3 < n/2, (4.3) is at most(

4k − 2

1

)(
4k − 2

2k − 1

)2 4k−2∑
|I′∪J′|=2k

(
n

|I ′ ∪ J ′| − 1

)

≤ (4k − 2) · 22(4k−2) · (2k − 1) ·
(

n

4k − 3

)
≤ 2(2k − 1)2 · 22(4k−2) ·

(
en

4k − 3

)4k−3

= O

(
k2 ·

(
4en

4k − 3

)4k−3
)

.

We are now ready to prove Theorem 4.1.3.

Proof. Recall that α = (α1, . . . , αn) is chosen uniformly at random from Fn
q . Proposition 4.2.4 guarantees

that det(VI,J(X)) is a nonzero polynomial of degree less than k2, when I, J ∈ [n]2k−1 are increasing vectors
that agree on at most k − 1 coordinates. Thus, by the Schwarz-Zippel-DeMillo-Lipton lemma Pr [EI,J] <

k2/q. Consequently, if we choose q = Ω
(
k4
(

4en
4k−3

)4k−3)
, we get from Theorem 4.2.6 and Claim 4.2.8 that

with positive probability none of the events EI,J hold. In other words, there exists an evaluation vector
α = (α1, . . . , αn) for which all the matrices VI,J(α) are non-singular.

Consider such a vector α = (α1, . . . , αn). If k = 2, we claim that each evaluation point appears at most
twice in the vector α. Indeed, assume otherwise, say αi = αj = αs for indices i < j < s. Then, it can be
easily verified that VI,J(α) is singular for I = (i, j, s) and any increasing vector J , in contradiction. Thus,
by puncturing the vector α at each repeated evaluation point we get the desired RS-code, of length at least
n′ ≥ n/2, over a field of size q = O((n′)5), which can correct any n′ − 3 insdel errors.

If k > 2, we claim that all the evaluation points are distinct. Indeed, assume αi = αj for some i < j.
Then, there are two increasing vectors I, J ∈ [n]2k−1 that Iℓ1 = Jℓ1 = αi and Iℓ2 = Jℓ2 = αj for some ℓ1 < ℓ2

52

(recall that since k > 2 then I and J can agree on two coordinates). We get that det(VI,J(α)) = 0 as the
rows ℓ1 and ℓ2 of the matrix are equal, and the theorem follows.

In Section 4.4, we provide an explicit construction of an [n, 2]q RS-code that can correct from n−3 insdel
errors and q = O(n4). This result outperforms the non-explicit result given in Theorem 4.1.3.

4.3 Deterministic construction for any k

In this section, we give our main construction of an [n, k] RS-code that can correct any n − 2k + 1 insdel
errors. Specifically, we prove Theorem 4.1.4 which is restated for convenience

Theorem 4.1.4. Let k and n be positive integers, where 2k−1 ≤ n. There is a deterministic construction of

an [n, k]q RS-code that can correct from n−2k+1 insdel errors where q = O
(
nk2·((2k)!)2

)
. The construction

runs in polynomial time for k = O(log(n)/ log log(n)).

Remark 4.3.1. The downside of this construction is the field size q = nkO(k)

, which renders it to run in
polynomial time only for k = O(log(n)/ log log(n)). For larger values of k, the representation of each field
element requires a super polynomial number of bits.

The Mason-Stothers theorem [Mas84, Sto81] is a result about polynomials that satisfy a non-trivial linear
dependence, which is analogous to the well-known abc conjecture in number theory [Mas85, Oes88]. Our
main tool is one of the many extensions of the Mason-Stothers theorem. For stating the theorem we need
the following notation: For a polynomial Y (x) ∈ Fq[x] over a field with characteristic char(Fq) = p ̸= 0,
denote by ν(Y (x)) the number of distinct roots of Y (x) with multiplicity not divisible by p.

Theorem 4.3.2 (“Moreover part” of Proposition 5.2 in [VW03]). Let m ≥ 2 and Y0(x) = Y1(x) + . . . +
Ym(x) with Yj(x) ∈ Fp[x]. Suppose that gcd(Y0(x), . . . , Ym(x)) = 1, and that Y1(x), . . . , Ym(x) are linearly
independent over Fp(x

p).1 Then,

deg(Y0(x)) ≤ −
(
m

2

)
+ (m− 1)

m∑
j=0

ν(Yj(x)) .

Construction 4.3.3. Let k be a positive integer and set ℓ = ((2k)!)2. Fix a finite field Fp for a prime
p > k2 · ℓ and let n be an integer such that 2k − 1 < n ≤ p. Let Fq be a field extension of Fp of degree k2 · ℓ
and let γ ∈ Fq be such that Fq = Fp(γ). Hence, each element of Fq can be represented as a polynomial in γ,
of degree less than k2ℓ, over Fp. Define the [n, k]q RS-code by setting αi := (γ − i)ℓ for 1 ≤ i ≤ n.

Proposition 4.3.4. The [n, k]q RS-code defined in Construction 4.3.3 can correct any n−2k+1 worst case
insdel errors.

Proof. Let I, J ∈ [n]2k−1 be two increasing vectors that agree on at most k − 1 coordinates. By Proposi-
tion 4.2.1 it is enough to show that VI,J(α) is non-singular, for every such I, J . By the Leibniz formula,
det(VI,J(α)) is a sum of (2k− 1)! terms corresponding to the different permutations. Denote these terms as
Pi(γ) for i = 0, . . . , (2k−1)!−1. Each of the terms is a product of the sign of the corresponding permutation
with some 2k − 1 elements of the form (γ − s)ℓ·j , for some s ∈ I ∪ J and 0 ≤ j ≤ k − 1. Assume towards a
contradiction that det(VI,J(α)) = 0 in Fq, i.e.,

det(VI,J(α)) = P0(γ) + . . .+ P(2k−1)!−1(γ) = 0 , (4.4)

in Fq. By viewing every term in (4.4) as a univariate polynomial in γ over Fp, one can verify that, for any
j, deg(Pj) = ℓ · k(k − 1) < k2ℓ. As Fq is an extension of Fp of degree k2ℓ, it follows that (4.4) holds also in

1Fp(xp) is the field of rational functions in xp. Namely, its elements are f(xp)/g(xp) where f(x), g(x) ∈ Fp[x] and g(x) ̸≡ 0.

53

Fp[γ], the ring of polynomials in the variable γ over Fp. By Proposition 4.2.4 the determinant of the variable
matrix (4.1) has a monomial that is uniquely obtained and therefore has a ±1 coefficient. Assume, without
loss of generality, that P0 is the image of this monomial under the mapping defined by the assignment
Xi 7→ (γ − i)ℓ. Note that since this mapping is injective on the set of monomials, no other monomial is
mapped to a scalar multiple of P0. In other words, P0 and Pi are linearly independent for any i ≥ 1. Assume
further that (without loss of generality) P1, . . . , Pm is a minimal subset among {Pi}i≥1 that spans P0 over
Fp. The existence of such a set follows from (4.4). Hence, we can write

P0 =

m∑
i=1

aiPi, where ai ∈ Fp\{0}. (4.5)

Clearly, by minimality, P1, . . . , Pm are linearly independent over Fp. Further, m ≥ 2, since otherwise there
would be an i > 0 such that Pi is a multiple of P0.

Since the Pi’s are of degree ℓk(k − 1), and P0 was obtained from a unique monomial in the expansion
of the determinant, it follows that the greatest common divisor Q := gcd(P0, . . . , Pm) has degree at most
ℓ(k(k − 1)− 1). By dividing (4.5) by Q we have

P0 =

m∑
i=1

aiPi, (4.6)

where Pi = Pi/Q. We will need the following claim, whose proof is deferred to the end of this section.

Claim 4.3.5. The polynomials P1, . . . , Pm are linearly independent over Fp(γ
p).

The contradiction will follow by invoking Theorem 4.3.2. Towards this end note that (i) By Claim
4.3.5 the polynomials P1, . . . , Pm are linearly independent over Fp(γ

p) (ii) gcd(P0, . . . , Pm) = 1, and (iii)
ν(Pj) ≤ 2k − 2, as Pj is the multiplication of 2k − 2 non-constant polynomials, each having a single root.
Thus, by (4.6) and Theorem 4.3.2

ℓ ≤ deg(P0)− deg(Q) = deg(P0) ≤ −
(
m

2

)
+ (m− 1) ·

m∑
i=1

ν(Pj)

< m2(2k − 2)

≤ ((2k − 1)!)2 · (2k − 2) ,

which is a contradiction by the choice of ℓ. This completes the proof.

It remains to prove Claim 4.3.5.

Proof of Claim 4.3.5. Assume towards a contradiction that there exist λ1, . . . , λm ∈ Fp(γ
p) not all zero, such

that
m∑
j=1

λj(γ
p)Pj(γ) = 0 . (4.7)

By clearing the denominators of the λj ’s and any common factor they might have, we can assume that the
λj ’s are polynomials in the variable γp with no common factors. Since deg(Pj) ≤ deg(Pj) < p, we get by
reducing (4.7) modulo γp that

m∑
j=1

λj(0)Pj(γ) = 0 .

Note that λj(0) ̸= 0 for some j, since otherwise γp would be a common factor of the λi’s. Hence, P1, . . . , Pm

are linearly dependent over Fp, which contradicts the choice of P1, . . . , Pm as a minimal spanning set.

By setting n = p in Construction 4.3.3 it follows that the field size of Construction 4.3.3 is roughly

nkO(k)

which is much worse than the field size guaranteed by the existential results in Theorem 4.1.2 and
Theorem 4.1.3. Note, however, that the construction runs in polynomial time for RS-codes with dimension
O(log(n)/ log log(n)). The proof of Theorem 4.1.4 immediately follows.

54

4.4 Explicit construction for k = 2 with quartic field size

In this section we prove Theorem 4.1.5, which is restated for convenience.

Theorem 4.1.5. For any n ≥ 4, there exists an explicit [n, 2]q RS-code that can correct from n − 3 insdel
errors, where q = O(n4).

The proof of Theorem 4.1.5 requires the notion of Sidon spaces, which were introduced in a work of
Bachoc, Serra, and Zémor [BSZ17] in the study of an analogue of Vosper’s theorem for finite fields. Later,
Roth, Raviv, and Tamo gave an explicit construction of Sidon spaces and used it to provide a construction
of cyclic subspace codes [RRT17]. Their construction was also recently used in [RLT21] to construct a
public-key cryptosystem. We also rely on their construction. We believe that Sidon spaces in general, and
specifically the construction of [RRT17], might find more applications in coding theory and cryptography in
the future. We begin with a formal definition of a Sidon space.

Definition 4.4.1. An Fq linear subspace S ⊆ Fqn is called a Sidon space if for any nonzero elements
a, b, c, d ∈ S such that ab = cd, it holds that

{aFq, bFq} = {cFq, dFq},

where xFq = {x · α : α ∈ Fq} .

A Sidon space S has the following interesting property, from which it draws its name: Given the product
a · b of two nonzero elements a, b ∈ S, one can uniquely factor it to its two factors a, b from S, up to a
multiplication by a scalar from the base field. Clearly, this is the best one can hope for, since for any
nonzero α ∈ Fq the product of the elements α · a, b/α ∈ S also equals a · b. A Sidon space can be viewed
as a multiplicative analogue to the well-known notion of Sidon sets, which is a common object of study in
combinatorics, see e.g. [ET41].

We proceed to present the construction of a Sidon space given in [RRT17].

Theorem 4.4.2 (Construction 15, Theorem 16 in [RRT17]). Let q ≥ 3 be a prime power, m ∈ N, and
n = 2m. Then, there exists an explicit γ ∈ Fqn such that S = {u + uq · γ | u ∈ Fqm} is an m-dimensional
Sidon space over Fq.

Another component in our construction is the “long” ternary code with minimum distance of at least 5,
given in [GS86]. We note that we could also use the codes given in [DD08].

Theorem 4.4.3. [GS86] For every m ≥ 1, there exists an explicit [(3m + 1)/2, (3m + 1)/2 − 2m]3 linear
code with minimum distance at least 5.

We next combine the above two algebraic objects and construct an RS-code with the desired properties.

Construction 4.4.4. For q = 3 and m ∈ N. Let S ⊂ F34m be a 2m-dimensional Sidon space over F3 as
guaranteed by Theorem 4.4.2. Let s1, . . . , s2m be a basis of S. Let H = (hi,j) be a (2m)× ((3m + 1)/2) parity
check matrix of the code given in Theorem 4.4.3. Our [n, 2]34m RS-code of length n = (3m + 1)/2 is defined
by the evaluation points

αj =

2m∑
i=1

sihi,j for 1 ≤ j ≤ (3m + 1)/2 .

In other words, we can think of our evaluation points as the n coordinates of the vector α = (s1, . . . , s2m) ·H.

The following property of the evaluation points αj follows easily from Theorem 4.4.3.

Lemma 4.4.5. Any four distinct αj’s are linearly independent over F3.

55

Proof. Consider four distinct αj ’s, say α1, α2, α3, α4, and assume towards a contradiction that there exist

β1, . . . , β4 ∈ F3 not all zero, such that
∑4

j=1 βjαj = 0. Then

0 =

4∑
j=1

βjαj =

4∑
j=1

βj

2m∑
i=1

sihi,j =

2m∑
i=1

sj

4∑
j=1

βjhi,j .

Since the sj ’s are linearly independent over F3 it follows that
∑4

j=1 βjhi,j = 0 for every i = 1, . . . , 2m.
Hence, the four columns h1, h2, h3, h4 of H are linearly dependent over F3, which contradicts the fact that
the minimum distance of the code checked by H is at least 5.

We proceed to prove that the constructed RS-code can decode from the maximum number of insdel
errors.

Theorem 4.4.6. The [n, 2]34m RS-code given in Construction 4.4.4 can correct any n− 3 worst case insdel
errors.

Proof. Assume towards a contradiction that this is not the case. Proposition 4.2.1 implies that there must
exist two triplets of distinct evaluation points (x1, x2, x3), (y1, y2, y3), that agree on at most one coordinate,
such that ∣∣∣∣∣∣

1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣ = 0 .

Equivalently, (y1 − y2)(x2 − x3) = (y2 − y3)(x1 − x2). Since the xi’s are distinct elements of the Sidon space
S, x2 − x3 and x1 − x2 are nonzero elements in S. Similarly, y1 − y2 and y2 − y3 are nonzero elements in S.
By definition of Sidon spaces, there exists a nonzero λ ∈ F3 such that

λ(y1 − y2) = y2 − y3 or λ(y1 − y2) = x1 − x2,

which contradicts Lemma 4.4.5. Indeed, each of the equations implies a nontrivial linear dependence over
F3 between at least three and at most four evaluation points (here we used the facts that the elements of
each triple are distinct and that the two triples agree on at most one coordinate).

We conclude this section with a proof of Theorem 4.1.5.

Proof of Theorem 4.1.5. By Theorem 4.4.6, the code given in Construction 4.4.4 is an RS-code of length
n = (3m + 1)/2, which is defined over the field F34m , which is of order O(n4), as claimed.

4.4.1 A lower bound on the field size

In Section 4.2.2 we proved the existence of optimal [n, k]q RS-codes for worst-case insdel errors, over fields
of size q = nO(k). This section complements this result by providing a lower bound on the field size for such
codes. Specifically, we ask how large must q be in any [n, k]q RS-code that can correct from n − 2k + 1
worst-case insdel errors. We prove the following.

Proposition 4.1.6. Any [n, k]q RS-code that can correct from n − 2k + 1 worst case insdel errors must
satisfy

q ≥ 1

2
·
(

n

(2k − 1)(k − 1)

) 2k−1
k−1

.

56

Proof. Consider an [n, k]q RS-code, defined by evaluation points α1, . . . , αn, that can correct any n− 2k+1
insdel errors. For a non-constant polynomial f of degree less than k let Vf be the set of all subsequences of
the codeword corresponding to f , of length 2k − 1:

Vf = {(f(αi1), . . . , f(αi2k−1
)) : 1 ≤ i1 < . . . < i2k−1 ≤ n} ⊆ F2k−1

q .

Now, since the code can decode from any n − 2k + 1 insdel errors, by Lemma 3.1.3, the longest common
subsequence between any two distinct codewords is of length at most 2k − 2. Therefore, the sets Vf and Vg

for two distinct polynomials f, g, are disjoint. Therefore,2∑
1≤deg(f)<k

|Vf | ≤ q2k−1. (4.8)

Next, we provide a lower bound on the size of Vf . For any non-constant polynomial f , of degree less
than k, and any a ∈ Fq there are at most k − 1 indices i such that f(αi) = a. Thus, for a fixed vector
(a1, . . . , a2k−1) ∈ Vf there are at most (k − 1)2k−1 increasing vectors of indices (i1, . . . , i2k−1) such that

(f(αi1), . . . , f(αi2k−1
)) = (a1, . . . , a2k−1).

Therefore |Vf | ≥
(

n
2k−1

)
/(k − 1)2k−1. Combined with (4.8) we have(

1

k − 1

)2k−1

·
(

n

2k − 1

)
·
(
qk − q

)
≤

∑
1≤deg(f)<k

|Vf | ≤ q2k−1 ,

By rearranging and the fact that q2k−1/(qk − q) ≤ 2qk−1 for q, k ≥ 2, we have(
1

2

) 1
k−1

(
n

(2k − 1)(k − 1)

) 2k−1
k−1

≤ q .

As one can easily verify, this bound is rather weak, as it provides an improvement over the trivial lower
bound of q ≥ n only for the vanishing rate regime of k = O(n1/4). For codes of dimension 2, the bound
implies q = Ω(n3), and it slowly degrades as one increases k. Nevertheless, it is always at least Ω(n2) for any
constant k. It is interesting to note that by combining Proposition 4.1.6 and Theorem 4.4.6 it follows that
an [n, 2]q RS-code that can decode from n− 3 insdel errors requires that Ω(n3) ≤ q ≤ O(n4). Determining
the minimum possible value of q for this case is an interesting open problem.

4.5 Summary and open questions

This chapter studies the performance of RS-codes against insdel errors. We showed that there are RS-codes
that are optimal against insdel errors, i.e., they achieve the half-Singleton bound. We also construct explicit
RS-codes that achieve this bound and, as far as we know, this is the first linear code that is shown to achieve
this bound.

As discussed, Construction 4.3.3 is not optimal in terms of the field size. It is a fascinating open question
to find an RS-code with an optimal field size. Specifically, the challenge is to construct an RS-code that can
correct from any n − 2k + 1 insdel errors, over a field of size O(nO(k)) (Theorem 4.1.2 and Theorem 4.1.3
prove the existence of such codes).

The lower bound on the field size proved in Proposition 4.1.6 is far from giving a full picture of the
tradeoff between dimension and field size. The natural open question is to significantly improve our lower
bound or provide a better upper bound.

Finally, another interesting question is to provide an efficient decoding algorithm for our constructions
of RS-codes.

2This equation remains true even if we include the constant polynomials.

57

Chapter 5

Constructions of coding schemes for
the binary deletion channel and the
Poisson repeated channel

5.1 Introduction

The two most studied channels are the Binary Erasure Channel (BECp) where each bit is independently
replaced by a question mark with probability p and the Binary Symmetric Channel (BSCp) where each bit
is independently flipped with probability p.

In this part, we consider the BDC with parameter p. This channel models the situation where bits
of a transmitted message are deleted (i.e. removed) from the message randomly and independently with
probability p. In particular, if a message of length n was transmitted on the BDCp then the length of the
received message is concentrated around (1 − p) · n. We note that the output of the BDC is very different
from that of the BEC or the BSC. For example, if we transmit the message 1110101 over each of the channels
and corruptions occurred in locations 2 and 5, then the BEC will return the word 1?10?01, the BSC will
return 1010001, and the BDC will return 11001. In particular, while the BEC and the BSC do not affect the
length of messages transmitted over them, the BDC does exactly that. Thus, unlike the BEC and BSC, the
BDC causes synchronization errors. In fact, one of the main reasons for introducing the BDC was to model
synchronization errors in communication.

The motivation to study the BDC is obvious. It is not just a theoretical object as it describes a real-life
scenario in which there is a loss of information that was sent on some physical layer as well as synchronization
errors. Moreover, the surveys [Mit09, MBT10] indicate that tools that were developed in the context of the
BDC are useful in the study of other questions. An example of such a question is the trace reconstruction
problem, which has applications in computational biology and DNA storage systems [BLC+16]. The problem
that we study in this work is the construction of explicit error correcting codes of (relatively) high rate (we
will soon explain this notion) for the BDCp.

One of the most fundamental questions when studying a channel is to determine its capacity, i.e., the
maximum achievable transmission rate over the channel that still allows recovering from the errors introduced
by the channel, with high probability. Shannon proved in his seminal work [Sha48] that the capacity of the
BSCp is 1−h(p), where h(·) is the binary entropy function (for 0 < x < 1, h(x) = −x log x−(1−x) log 1− x).
I.e., there are codes with block lengths going to infinity, whose rates converge to 1− h(p), that can recover
with high probability from the errors inflicted by the channel. Elias [Eli55], who introduced the BECp,
proved that its capacity is 1− p.

What about the capacity of the BDCp? In spite of many efforts (see [Mit09]), the capacity of the BDCp

is still not known and it is an outstanding open challenge to determine it. Yet, for the extremal cases, the
asymptotic behavior is somewhat understood. In the regime where p → 0 the capacity approaches to 1−h(p)

58

[KMS10], i.e. it approaches the capacity of the BSCp. In [MD06], the authors showed that the capacity is
at least (1− p)/9 for all p ∈ (0, 1). In particular, even if p is extremely close to 1, there are codes of positive
rate that allow reliable communication over this channel. Another somewhat surprising aspect of this result
is that the asymptotic behavior is only a constant off from the capacity of the related BECp. In the BECp,
we know how to build codes that nearly achieve its capacity of 1 − p for every p. This is not the case for
the BDCp, where the best explicit construction known for the regime p → 1, prior to this work, has rate of
(1− p)/120 [GL18].

5.1.1 Lower bounds on the capacity of the BDC

The best known lower bound on the capacity is due to Mitzenmacher and Drinea [MD06, DM07] who showed
a lower bound of 0.1185·(1−d) for all d, meaning that there are codes of this rate such that every transmitted
codeword is decoded correctly with high probability. This lower bound is the best known lower bound for
the high deletion probability regime (d ≥ 0.95). For smaller values of d, Drinea and Mitzenmacher prove
stronger bounds in [DM07, Table 1]. Their proof is constructive, but it does not directly yield an efficient
decoding algorithm for the family of codes they construct.

5.1.2 Upper bounds on the capacity of the BDC

Fertonani and Duman [FD10] proved several upper bounds on the capacity of the BDC. They do this by
providing the transmitter and the receiver with “hints” about the noise of the channel. Adding these hints
only increases the information rate, allowing them to bound the capacity of the BDC from above by bounding
the capacity of some auxiliary channels using the Blahut-Arimoto algorithm.

Dalai [Dal11] and Rahmati and Duman [RD14] refine this analysis and prove that for any d ∈ (0.65, 1),
the capacity of the BDC is bounded from above by C(BDCd) ≤ 0.4143(1−d). Given unlimited computational
resources, these methods will converge to the capacity of the channel, but this convergence is extremely slow.

5.1.3 Efficient constructions for the BDC

There are several constructions of efficiently decodable codes for the BDC. Guruswami and Li [GL18] presents
a deterministic and efficient code construction for the BDCp with rate (1−p)/120 for all values of p. This rate
is smaller than Mitzenmacher’s bound, but it is the first construction with rate that scales proportionally
to (1 − p) for p → 1. Then, Con and Shpilka [CS22], improved the construction of [GL18] and constructed
efficient codes for the BDCp that have rate (1−p)/16. This construction and its analysis are presented in this
thesis. After our construction was presented, the works [Rub22, PLW22] presented a method to convert any
code for the BDC, not necessarily explicit nor efficient, into an explicit and efficient code for the BDC with a
negligible decrease to its rate. Therefore, the codes generated using Mitzenmacher and Drinea’s construction
can be converted to explicit and efficient codes for the BDC. We also mention that in [TPFV21] the authors
prove polarization for the deletion channel and show that the capacity can be achieved using their scheme.

5.1.4 The Poisson repeat channel

Another model that we consider is the Poisson repeat channel (PRC) that was first introduced in the work of
Mitzenmacher and Drinea [MD06]. In the PRC with parameter λ, each bit of the message is (randomly and
independently) replaced with a discrete number of copies of that bit, distributed according to the Poisson
distribution with parameter 0 < λ. In particular, with probability e−λ the bit is deleted from the message
(i.e. this channel can cause synchronization errors similar to the BDC). This channel can model, for example,
messages sent using a keyboard that has a tendency to get stuck so a key cannot be pressed or can get stuck
and then its symbol is repeated several times. While the PRC is less motivated by practical applications
(we are unaware of any applications of this channel besides in the study of the BDC), it is closely related
to the BDC as demonstrated in the work of Mitzenmacher and Drinea [MD06], Drinea and Mitzenmacher
[DM07] and Cheraghchi [Che18]. In particular, the lower bound on the capacity (a notion that we explain

59

shortly) of BDCp of (1− p)/9 [MD06] relies on a reduction from the PRCλ. We too exploit the connection
between the BDC and the PRC, and using our construction for the BDC we obtain explicit constructions of
error correcting codes for the PRC.

5.1.5 Our Results

In this work, we present and analyze a polynomial time construction of a family of codes for the BDCp that
achieves rate higher than (1−p)/16 for every p and have polynomial time encoding and decoding algorithms.
We also show that this construction yields a family of codes for PRCλ of rate R > λ/17 for λ ≤ 0.5. This
further emphasizes that these channels have much in common.

Specifically, we improve the construction presented in [GL18] and construct an explicit family of codes
for the binary deletion channel with rate at least (1 − p)/16 for any p ∈ (0, 1) that have polynomial time
encoding and decoding algorithms.

Theorem 5.1.1. Let p ∈ (0, 1). There exist a family of binary error correcting codes {Ci}∞i=1 for the BDCp

where the block length of Ci goes to infinity as i → ∞ and

1. Ci can be constructed in time polynomial in its block length.

2. Ci has rate at least (1− p)/16.

3. Ci is decodable in quadratic time and encodable in linear time.

As mentioned earlier, we show that the same construction works for the PRCλ as well. In particular we
prove,

Theorem 5.1.2. Let λ ≤ 0.5. There exist a family of binary error correcting codes {Ci}∞i=1 for PRCλ where
the block length of Ci goes to infinity as i → ∞ and

1. Ci can be constructed in time polynomial in its block length.

2. Ci has rate Ri > λ/17.

3. Ci is decodable in quadratic time and encodable in linear time.

To the best of our knowledge, this is the first explicit construction of an error correcting code for the
PRCλ.

5.1.6 Construction and Proof Overview

Our construction follows the footsteps of the construction of Guruswami and Li [GL18] with some important
modifications. We next describe the construction and then its analysis.

Construction: There are several layers to our construction as depicted in Figure 5.1 on page 61. The
first two layers come from code concatenation while the third and fourth layers blow-up the code further by
repeating symbols and inserting “buffers” between inner codewords. These four layers are similar to those
in the construction of [GL18] and the main difference between the constructions is that we use a different
inner code and the blow-up in our construction is considerably smaller. We now describe each step in more
detail.

Recall that code concatenation is the operation of viewing the message as a shorter message over a larger
alphabet, then applying an error correcting code over the large alphabet (the outer code) to the message
and, finally, viewing each symbol of the encoded message as a short message over {0, 1}, it is encoded using
a binary error correcting code (the inner code).

In our construction, we view the messages as strings of length k over the alphabet Σ = {0, 1}m′
(where

m′ is some constant that we later optimize). As an outer code, we use the code from [HS17], which is an
efficient insertion-deletion code with rate close to 1 over Σ. This code returns a word (σ1, σ2, . . . , σn) ∈ Σn.

60

message

σ1 σ2 . . . σn

(1) Outer encoding

c
(in)
σ1 c

(in)
σ2

(2) Concatenation: en-
coding σi using inner en-
coding

. . . c
(in)
σn

c
(in)
σ1 0 . . . 0 c

(in)
σ2 0 . . . 0 . . .

(3) Buffering

0 . . . 0 c
(in)
σn

· · · 1 00 1 0 11 · · ·

· · · 1111 000000000000 1111 0000 111111111111 · · ·

(4) Blow-up

Figure 5.1: The encoding process.

We construct our inner code using a greedy algorithm. First we consider all binary strings of length m
which consist of exactly β1m 1-runs and 0.5(1 − β1)m 2-runs (i.e. alternating blocks of 0’s and 1’s where
each block length is ≤ 2) where β1 is a parameter that we will optimize later. Then, we add a codeword
to our codebook if it does not contain a subsequence of length ≥ m− δm that is also a subsequence of any
codeword that is already in our codebook. Note that even though the construction time is exponential in
m, as m = O(1) in our construction this does not affect the run time by more than a constant factor.

The encoding process is thus as follows (see also Figure 5.1). We first encode the message using the
outer code to a codeword of length n over Σ. Then, the concatenation process takes every symbol, σi of the
outer codeword and maps it to a codeword from the inner code, i.e., a concatenated codeword is of the form
c1 ◦ c2 ◦ · · · ◦ cn where ci = ENCin(σi), where ENCin is the encoding function of the inner code. This is not
the end of the story. In order for the concatenated code to overcome a large amount of deletions caused by
the channel we add an additional layer of encoding:

1. We place long buffers of zeros (of length NB) between inner codewords. This step helps the decoder
identify where an inner codeword starts and where it ends.

2. We replace each 1-run with an N1-run and each 2-run will become an N2-run (runs of length N1 and
N2). This helps the decoder identify if the run in the inner codeword was a run of length 1 or 2.

This step is also similar to the construction of [GL18], however, perhaps surprisingly, since we restrict
our inner codewords to have a fixed number of 1-runs and 2-runs, this enables us to have N1 and N2

considerably smaller than the blow-up parameter used in [GL18]. It is clear that the code construction is
efficient as the outer code of [HS17] can be encoded efficiently and the inner code is of constant length and
thus can also be encoded efficiently. The last step is clearly efficient (as B,N1 and N2 are constants).

61

Decoding: We now describe our decoding algorithm. First, we identify the buffers in order to divide
the string into “decoding windows” that should ideally represent corrupted inner codewords. Second, every
decoding window is decoded in the following way: Every run longer than some threshold T is replaced with
a 2-run (of the same symbol) and every run of length ≤ T is replaced with a 1-run. The third step of
the decoding is to use a brute force decoding algorithm on each decoded window to find the closest inner
codeword. Since the inner code’s block length is constant this step takes constant time for every such window
and hence runs in linear time in the length of the word. The last step in the decoding algorithm is to run
the decoding algorithm of the outer code as given in [HS17]. This algorithm runs in time quadratic in the
outer code’s block length. Hence the total run time of our decoder is quadratic in the length of the message.

Analysis: Our analysis classifies errors to three types:

1. Buffer deletions: these are deletions that caused a buffer between inner codewords to completely
disappear.

2. Spurious buffers: these are deletions of many 1’s that caused the algorithm to mistakenly identify a
buffer inside an inner codeword.

3. Wrong decoding of inner codewords: these occur when the algorithm fails to decode correctly a cor-
rupted inner codeword.

The first and second error types can happen in the first stage of the algorithm, i.e., when the decoder
identifies the buffers between blown-up inner codewords. First, the decoder might not identify a buffer when
a large portion of the buffer was deleted and second, the decoder might mistakenly think that there is a
buffer inside an inner codeword if many consecutive runs of the symbol 1 were deleted. We show by using
simple concentration bounds that both error types happen with exponentially small probability in m, the
inner code block length (as m = O(1) this is a constant probability, but it is still small enough to allow our
construction to work). The third error type we consider is when the edit distance between the sent inner
codeword and the corresponding string obtained from the second step of the decoding algorithm is greater
than δinm, the inner code’s decoding radius. In this case, the decoding algorithm of the inner code might
output a wrong codeword. While this can happen, we show that the expected edit distance between the
original inner codeword and the decoded inner codeword1 is smaller than δinm, for a large enough m, and
furthermore, the edit distance is concentrated around its mean. Hence, we expect to decode successfully
most of the inner codewords. Finally, we show that this reasoning implies that the decoding algorithm
of the outer code, which is executed at the last step of our decoding algorithm, succeeds with probability
1− exp(−Ω(n)).

In terms of complexity, we show that even though the construction and decoding of the inner code are
exponential in the inner code’s block length, the overall complexity (construction, encoding, and decoding) is
dominated by the complexity of the outer code which has polynomial time encoding and decoding algorithms
thanks to [HS17].

Comparison to [GL18]. We end this high-level summary by elaborating more on the main similarities and
differences between our construction and the construction of Guruswami and Li [GL18]. Our scheme, as well
as our decoding algorithm, follow closely the scheme and algorithm of Guruswami and Li. In particular, at a
high level, the encoding layers are the same as in [GL18], meaning that both constructions use concatenation
with the outer code from [HS17], place long buffers between inner codewords and blow-up the code. Since
the encoding layers are similar, the decoding steps in both are also similar: first identify the buffers, then use
a threshold to distinguish between 1-runs and 2-runs, then use brute force to decode the inner codewords,
and finally use the decoder of [HS17]. The main differences between our scheme and the scheme from [GL18]
are in the inner code that is used, the blow-up process which is finer in our scheme and our analysis which
is more fine-tuned:

1In the proof we use the term decoded window as we are never really sure when a codeword started and ended, but this
does not affect the intuition.

62

• The inner code that was used in [GL18] has the property that every codeword consists of 1-runs and
2-runs, but they do not have restriction on the number of 1-runs and 2-runs. In contrast, in our work,
all inner codewords have the same number of 1-runs and 2-runs. This property allows us to increase
the rate of the inner code compared to [GL18] (See Propositions 5.3.4 and 5.3.5 and the discussion
following them), while maintaining its robustness against insertions and deletions.

• In [GL18] the authors blow-up the code by replacing every bit with 60/(1−p) copies of that bit. Instead
of blowing-up every single bit, we blow-up each 1-run to an N1-run and each 2-run to an N2-run where
N1 ̸= N2 and both are significantly smaller than 60/(1 − p) (N1 ≈ 6/(1 − p) for example). Thus, the
effect of the blow-up on the rate of our code is significantly smaller than in [GL18].

• We improve on the analysis in [GL18], of the edit distance between decoded inner codewords and the
original inner codewords, by better accounting the effect of decoding errors on the edit distance. One
more improvement lies in our analysis where instead of using the Chernoff bound to upper bound
the probability of certain events, we use the fact that binomial distributions with fixed expectations
converge to a Poisson distribution. This gives a better upper bound which eventually leads to some
saving when optimizing parameters. Our analysis further highlights the tight connection between the
BDC and the PRC via the convergence of the binomial distribution to the Poisson distribution.

These modifications, as well as a careful choice of parameters, is the reason for the great saving in the
rate compared to [GL18].

5.1.7 Organization

The chapter is organized as follows. In Section 5.2 we introduce the basic notation as well as some well known
facts from probability and from previous papers. Section 5.3 contains the construction of our inner code.
In Section 5.4 we give our construction and in Section 5.5 we give its analysis. We give slightly improved
bounds for fixed values of p in Section 5.6. Finally, Section 5.7 explains how to carry our construction and
analysis to the PRC.

5.2 Preliminaries

Throughout this chapter, log(x) refers to the base-2 logarithm and h(x) denotes the binary entropy function,
that is, h(x) = −x log(x)− (1− x) log(1− x), for 0 < x < 1.

Definition 5.2.1. Let s be a string. A run r in s is a single-symbol substring of s such that the symbol
before the run and the symbol after the run are different from the symbol of the run. A run of length ℓ will
be denoted as ℓ-run.

For example, consider the string ⟨0111001⟩. It can be written as the (string) concatenation of the
alternating runs 0◦111◦00◦1. Clearly, every binary string is a concatenation of runs of alternating symbols.
The following lemma of Levenshtein will be useful in the analysis of the rate of our inner code.

Lemma 5.2.2. [Lev66] Let s be a string and let r(s) be the number of runs in s. There are at most(
r(s) + d− 1

d

)
different subsequences of s of length |s| − d.

5.2.1 Facts from Probability

We use two probability distributions in this chapter. The binomial distribution with parameters n and p,
denoted Bin(n, p), is the discrete probability distribution of the number of successes in a sequence of n

63

independent trials, where the probability of success in each trial is p and the probability of failure is 1− p.
The second distribution is the discrete Poisson distribution with parameter λ, denoted as Poisson(λ) which
is defined with the following probability mass function

Pr [X = k] =
e−λλk

k!
.

A well known fact about Poisson distribution is

Lemma 5.2.3. [MU05, Lemma 5.2] Let X and Y be two independent Poisson random variables with
parameters µ1 and µ2. I.e., X ∼ Poisson(µ1) and Y ∼ Poisson(µ2). Then Z = X + Y is a Poisson random
variable with parameter µ1 + µ2.

We shall use the following simple lemma in our analysis:

Lemma 5.2.4. Fix T to be a non negative integer and let Y (λ) ∼ Poisson(λ). Then the function

f(λ) := Pr[Y (λ) ≤ T] = e−λ
T∑

i=0

λi

i!

is monotonically decreasing in λ.

Proof. It holds that

df

dλ
(λ) = −e−λ

T∑
i=0

λi

i!
+ e−λ

T−1∑
i=0

λi

i!
= −e−λλ

T

T !
< 0 .

The next theorem shows that if we let n tend to infinity and p tend to zero under the restriction that
p · n = λ, then the binomial distribution converges to the Poisson distribution with parameter λ.

Theorem 5.2.5. [MU05, Theorem 5.5] Let λ > 0 be fixed. Let {Xn} be a sequence of binomial random
variables such that Xn ∼ Bin(n, p), and limn→∞ np = λ. Then, for any fixed k,

lim
n→∞

Pr[Xn = k] =
e−λλk

k!
.

The next theorem provides more information about the binomial distribution in the regime where np = λ.
Specifically, it tells us when is Pr[X ≤ T] an increasing function of n.

Theorem 5.2.6. [AS65, Theorem 2.1] Let {Xn} be a sequence of binomial random variables with parameters
n and p = λ/n. Let T be some parameter. Set f(n) := Pr[Xn ≤ T].

1. If T ≤ λ− 1 then for every n ≥ λ, f(n) is monotonically increasing in n.

2. If λ ≤ T then for every n ≥ T , f(n) is monotonically decreasing in n.

For concentration bounds, we will use the following versions of the Chernoff bounds.

Lemma 5.2.7. [MU05, Theorems 4.4 and 4.5] Suppose X1, . . . , Xn are independent identically distributed
random variables taking values in {0, 1}. Let X =

∑n
i=1 Xi and µ = E [Xi]. Then, for any 0 < α < 1:

Pr [X ≥ (1 + α)nµ] ≤ e−
µnα2

3

and

Pr [X ≤ (1− α)nµ] ≤ e−
µnα2

2 .

64

When we have a Poisson random variable we shall use the following Chernoff bound

Lemma 5.2.8. [MU05, Theorem 5.4] Let X be a Poisson random variable with parameter µ.

1. If x > µ, then

Pr(X ≥ x) ≤ e−µ(eµ)x

xx
.

2. If x < µ,

Pr(X ≤ x) ≤ e−µ(eµ)x

xx
.

Another concentration bound we use is Hoeffding’s inequality

Theorem 5.2.9. [Hoe94, Theorem 2] If X1, X2, . . . , Xn are independent random variables with finite first
and second moment and ai ≤ Xi ≤ bi for 1 ≤ i ≤ n. Let X =

∑n
i=1 Xn and µ = E[X] then for t > 0

Pr[X − µ > t] < exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

To approximate binomial coefficients we shall use the following lemma

Lemma 5.2.10. For any n, k ∈ N such that k/n ≤ 1/2 we have,

2nh(
k
n)−O(logn) ≤

(
n

k

)
≤ 2nh(

k
n) .

The proofs of the bounds follow from Stirling’s formula, e.g., see [GRS12, Section 3.2]

5.2.2 The Code of Haeupler and Shahrasbi [HS17]

Our construction relies on the following code of Haeupler and Shahrasbi [HS17].

Theorem 5.2.11 ([HS17, Theorem 1.1]). For every εout > 0 and δout ∈ (0, 1) there exists n0 so that for
every n > n0 there is an integer k satisfying k/n > 1 − δout − εout, an alphabet Σ of size Oεout(1) and
encoding and decoding maps E : Σk 7→ Σn, D : Σ∗ 7→ Σk, respectively, such that if ED(E(x), y) ≤ δoutn then
D(y) = x. Further E and D are explicit and can be computed in linear and quadratic time in n, respectively.

We shall denote with Rout := k/n the rate of this code, which will be used as the outer code in our
construction.

5.3 The Inner Code

In this section we describe the construction of our inner code. Before giving the construction we define a set
of strings from which we shall pick our codewords.

Definition 5.3.1. We denote with S ⊂ {0, 1}∗ the set containing all binary strings s that start and end with
the symbol 1 and that contain only 1-runs and 2-runs.

Let β1 ∈ [0, 1]. Define Sm,β1 ⊂ S to be the set of all s ∈ S of length m, such that the number of 1-runs
in s is exactly β1m and the number of 2-runs in s is exactly β2m = (1− β1)m/2. Denote β := β1 + β2.

Remark 5.3.2. We observe that as every string in S begins and ends with the same symbol, the number of
runs in it is odd. Accordingly, βm, in the definition of Sm,β1

, is an odd integer.

Our goal in this section is to construct a code C ⊂ Sm,β1 such that the length of a longest common
subsequence of any two different codewords is < m− δm.

65

Remark 5.3.3. Observe that the deletion channel is likely to output a word that is not in S. However,
Algorithm 5 (given in Section 5.5), for decoding the final code, contains a threshold decoding step (Step 2
in Algorithm 5) that always returns a binary string in S. We further restrict our attention to Sm,β1

as it
somewhat simplifies the analysis.

We construct this code using the natural greedy algorithm: We consider all strings in Sm,β1
⊂ S and

greedily choose strings that are far from each other. To reason about the parameters of the code, we need
the following propositions.

The first proposition gives an upper bound on the size of the “deletion ball”, i.e., given a string s ∈ Sm,β1

it upper bounds the number of different subsequences of s of length m− δm, that belong to S.

Proposition 5.3.4. Let s ∈ Sm,β1
. It holds that

{s′ ∈ S | s′ is a subsequence of s and |s′| = m− δm} ≤
(
(β + δ)m

δm

)
.

Proof. By definition, s is a binary string that contains exactly βm runs. Let H be the set of all the
subsequences obtained from s by applying δm deletions. According to Lemma 5.2.2, the size of H is at most(
βm+δm−1

δm

)
<
(
βm+δm

δm

)
. Clearly if we restrict further and consider only those strings in H ∩ S we can only

decrease the size of the set.

The second proposition upper bounds the size of the “insertion ball”, i.e., given a string s′ ∈ S of length
m − δm, it gives an upper bound on the number of strings s ∈ Sm,β1 that can be obtained from s′ by
performing δm insertions. The proof of this proposition is considerably more elaborate.

Proposition 5.3.5. Let 0 < δ < β1/3. Fix ssub ∈ S such that |ssub| = m − δm. The number of binary
strings in Sm,β1

that contain ssub as a subsequence is at most
(
βm
δm

)
.

We note that the equivalent propositions from [GL18] gave upper bounds of
(
m
δm

)
and O(δm) ·

(
m
δm

)
respectively. The main reason for our saving is that we restrict our codewords to have exactly β1m 1-runs
and β2m 2-runs. This saving is one of the places where we improve upon [GL18]. This improvement affects
the rate of the inner code as we shall later see.

The proof of the proposition relies on an algorithm for generating all strings s ∈ Sm,β1
such that ssub is

a subsequence of s. As in [GW17a, Lemma 2.3], in order to avoid over counting, we will generate all such s
by finding the lexicography first occurrence of ssub in s. We first explain the idea behind the algorithm and
then prove Proposition 5.3.5.

Denote ssub = ⟨b1b2 . . . bm−δm⟩, where bi ∈ {0, 1}. In order to obtain a string s ∈ Sm,β1
from ssub we

need to choose indices 1 ≤ n1 < n2 < . . . < nm−δm ≤ m for the bits of ssub in s. Moreover, to make sure
that the locations chosen are indeed the lexicography first occurrence of ssub in s, the entries between ni

and ni+1 (for 1 ≤ i ≤ m− δm− 1) must contain the opposite bit of the symbol in location ni+1.
Since both ssub and s consist of just 1-runs and 2-runs, this puts some restrictions on the embedding of

ssub in s, e.g., we cannot have ni+1 − ni > 3 (all locations between them (and maybe longer) are identical
and hence give a run that is too long). In particular, and more formally, we have the following restrictions

1. The first bit in ssub must be located as the first bit in s. This is because the first bit in s must be a 1
bit. I.e., n1 = 1.

2. Let bi be a 1-run in ssub and assume w.l.o.g. that it is a 0 bit. Its location, ni, must be chosen such
that the location of the next bit in ssub, bi+1, is either

(a) ni+1 = ni + 1. I.e., ⟨bi, bi+1⟩ = ⟨01⟩ in ssub is mapped to ⟨01⟩ in s, or

(b) ni+1 = ni + 2. I.e., ⟨01⟩ in ssub is mapped to ⟨001⟩ in s.

The case where bi = 1 is completely analogous.

66

3. Let bi, bi+1 be a 2-run in ssub (i.e., the symbols of bi and bi+1 are the same) and assume w.l.o.g. that
both symbols are 0. The locations ni, ni+1, ni+2 of bi, bi+1, bi+2 (bi+2 is a 1 bit) in s must be chosen
in accordance with one of the following cases:

(a) ni+1 = ni + 1 and ni+2 = ni + 2. I.e., ⟨001⟩ in ssub is mapped to ⟨001⟩ is s.
(b) ni+1 = ni + 2 and ni+2 = ni + 3. I.e., ⟨001⟩ in ssub is mapped to ⟨0101⟩ in s.

(c) ni+1 = ni + 2 and ni+2 = ni + 4. I.e., ⟨001⟩ in ssub is mapped to ⟨01001⟩ in s.

(d) ni+1 = ni + 3 and ni+2 = ni + 4. I.e., ⟨001⟩ in ssub maps to ⟨01101⟩ in s.

(e) ni+1 = ni + 3 and ni+2 = ni + 5. I.e., ⟨001⟩ in ssub is mapped to ⟨011001⟩ in s.

The case where bi = 1 is completely analogous.

4. If nm−δm < m, then the remaining bits of s must be filled with 1-runs and 2-runs such that the total
number of 1-runs and 2-runs is exactly β1m and β2m, respectively.

It is not hard to verify that any arrangement that does not follow the restrictions above will either
contain a run of length 3 or more, will not have the right number of 1-runs, or will not correspond to the
lexicographically first embedding of ssub in s.

We shall think of the cases above as describing operations that can be performed on a string s′. E.g. if
s′ = ⟨101001⟩ and we apply 3e to the last three bits in s′ then we will get the string ⟨101011001⟩, where the
bold symbols are the symbols that were added from the application of 3e (in other words, the symbols that
are not bold are the embedding of the original string). If we then apply, say, 2b to the second and third bits
of the new string then we will get the string ⟨1001011001⟩ etc.

To simplify matters note that if we consider a 2-run in s′, say ⟨001⟩ and we wish to apply 3c on it, i.e.
map it to ⟨01001⟩ in s, then we can think about this as first applying 3b to ⟨001⟩, obtaining the string
⟨0101⟩ and then applying to the last two bits 2b, getting the string ⟨01001⟩. I.e. we can simulate 3c by first
applying 3b and then applying 2b. Similarly, we can simulate each of the operations 3d and 3e using 3b and
then applying 2b to the appropriate bits (for 3e we need to apply 3b and then 2b to two different locations).

Using the above terminology, we next describe an algorithm that given a string ssub generates s ∈ Sm,β1

such that ssub is a subsequence of s. The algorithm will first select a subset of the 2-runs in ssub and apply
3b to them. Then it will add more 1-runs to the resulting string, locating them to the right of the last bit.
Finally, it will apply 2b to several 1-runs.

There is a delicate point that we wish to stress before giving the algorithm. In this last step we restrict
the 1-runs to which we can apply 2b. To illustrate why the restriction is needed, consider the following
example: Consider the string ⟨001⟩ and apply 3b to it. This generates the string ⟨0101⟩, where, as before,
the bold symbols represent the symbols that were added in the embedding. If we now apply 2b to the first
two bits then we would get ⟨00101⟩. This however, is not the first lexicographical embedding of ⟨001⟩ in
⟨00101⟩ (which is ⟨00101⟩). Thus, if we wish to construct a lexicographically first embedding of ssub in the
resulting string s then in the last step, where we apply 2b to several runs, we should never apply 2b to the
first bits resulting from the application of 3b in the first step.

In view of the above discussion we say that a 1-run is frozen if it is the first bit of a substring that
resulted from applying 3b. In other words, a 1-run is not frozen if it is either an original 1-run of ssub, a
1-run that was added in the second step, or if it is the 2nd or 3rd bits generated by applying 3b (i.e. if
we had ⟨001⟩ → ⟨0101⟩ then the non-frozen 1-runs are the bold bits ⟨0101⟩, and the last bit may also be
non-frozen).

Let r1 and r2 be the number of 1-runs and 2-runs in ssub and let x be an integer such that 0 ≤ x ≤ δm
and r1 + r2 + 2x ≤ βm.

67

Algorithm 4: Embed

input : ssub ∈ S such that |ssub| = m− δm,
and 0 ≤ x ≤ δm where r1 + r2 + 2x ≤ βm

output: A string s ∈ Sm,β1
such that ssub is a subsequence of s

[1] Select x 2-runs in ssub and apply 3b to them.
/* total number of 1-runs is r1 + 3x and of 2-runs is r2 − x */

/* total number of non-frozen 1-runs is r1 + 2x */

[2] Add βm− r1 − r2 − 2x many 1-runs to the right of the string
/* total number of runs is βm and number of 1-runs is βm− r2 + x */

/* total number of non-frozen 1-runs is */

/* βm− r1 − r2 − 2x+ r1 + 2x = βm− r2 */

[3] Select δm− (βm− r1 − r2 − x) non-frozen 1-runs and apply 2b to each of them
/* length of resulting string is exactly m */

Claim 5.3.6. Algorithm 4 returns a string in Sm,β1 .

Proof. Step 1 turns each of the chosen x 2-runs into three 1-runs, only two of which are non-frozen. Hence,
the number of 2-runs is r2−x, the number of 1-runs is r1+3x and the number of non-frozen 1-runs is r1+2x.

Step 2 completes the number of runs to βm by introducing βm − r1 − r2 − 2x new 1-runs2. The total
number of 2-runs did not change, the total number of 1-runs is now

(r1 + 3x) + (βm− r1 − r2 − 2x) = βm− r2 + x

and the number of non-frozen 1-runs is

(r1 + 2x) + (βm− r1 − r2 − 2x) = βm− r2 .

Step 3 turns δm− (βm− r1 − r2 − x) 1-runs into 2-runs. We now show that this gives a string in Sm,β1
.

For this we need to show that it has only 1-runs and 2-runs and the correct number of runs of each type.
The fact that we only get 1- and 2-runs follows from the definition of our operations. Now, the resulting
number of 1-runs is

(βm− r2 + x)− (δm− (βm− r1 − r2 − x)) = 2βm− δm− 2r2 − r1

= 2βm− δm− (m− δm)

= 2βm−m

= β1m ,

where we have used the facts that m− δm = |ssub| = 2r2 + r1, that β = β1 + β2 and that m = β1m+2β2m.
Similarly, the number of 2-runs is

(r2 − x) + (δm− (βm− r1 − r2 − x)) = r1 + 2r2 + δm− βm

= m− δm+ δm− (β1 + β2)m

= β2m .

Note that by our construction, the string begins with a 1 and it also ends with a 1 as the total number of
runs is odd (recall Remark 5.3.2). Thus, the resulting string is in Sm,β1

as claimed.

The next claim shows that any s ∈ Sm,β1
that contains ssub as a subsequence can be obtained from the

algorithm for an appropriate choice of 0 ≤ x ≤ δm.

2Note that since r1 + r2 + 2x ≤ βm, this operation is well defined.

68

Claim 5.3.7. For any s ∈ Sm,β1 that contains ssub as a subsequence, there exists an 0 ≤ x ≤ δm and
appropriate choices for the different steps of the algorithm so that the resulting string is s.

Proof. As the proof contains many tedious details, we leave some of the arguments to the reader. Let
s ∈ Sm,β1 and denote by 1 = n1 < n2 < . . . < nm−δm ≤ [n] the embedding of ssub in s that corresponds to
the first lexicographic appearance of ssub in s. By the discussion above, there are restrictions on the values
ni. Specifically, when we embed a 1-run from ssub in s, then ni and ni+1 must satisfy one of the rules 2a or
2b and when we embed a 2-run, we must follow one of the rules 3a–3e.

Observe that the locations n1, . . . , nm−δm determine how to embed ssub into s, simply by going over all
the runs in ssub from left to right. This can be easily proved by induction. For example, assume that the
first run of ssub is ⟨110⟩ and s starts with ⟨10010⟩. Then n1 = 1, n2 = 4, and n3 = 5 and this implies
that we need to perform 3d to the first run in ssub. Now, our algorithm, when going over the first 2-run in
Step 1, returns the string ⟨1010⟩. Then, in Step 3 the first 0 is a non-frozen 1-run and therefore the algorithm
performs 2b to this 0. This combination of 3b and 2b is equivalent to 3d, as required. Thus, the algorithm
correctly embeds the first run of ssub into s. We now move to the next run etc.

Notice that by the description above, after embedding all the runs, it may be the case that nm−δm < m.
However, looking back at the algorithm, in Step 2 we add several 1-runs to the embedding. Then, in Step 3,
it may be the case that some of these 1-runs will be turned to 2-runs by the algorithm (all the added 1-runs
to the right of the string are non-frozen). This ensures that the number of runs in the resulting string after
Step 3 is exactly βm and that we still have a valid embedding of ssub.

Finally, note that there is a value of x that will make the algorithm embed ssub successfully. The proof in
the previous paragraph determines x exactly. It is the number of times that we applied 3b in the embedding.
Clearly, this number is at most δm as otherwise the size of the resulting string will be larger than m. Also
note that r1 + r2 + 2x ≤ βm since otherwise we create a string that contains more than βm runs. Thus, x
as we just defined satisfies both requirements 0 ≤ x ≤ δm and r1 + r2 + 2x ≤ βm.

To conclude, if we consider all possible values x can take, and all the possibilities to perform the choices in
the algorithm we get an upper bound on the number of strings s ∈ Sm,β1 which contain ssub as a subsequence.
We are now ready to prove Proposition 5.3.5.

Proof of Proposition 5.3.5. By the argument above it is enough to count the number of possibilities for x
and the number of possible choices made by the algorithm. For any choice of x, there are exactly

(
r2
x

)
ways

of selecting x many 2-runs in Step 1 of Algorithm 4. In Step 2 of the algorithm we have no freedom since
we add the new 1-runs at the end of the string. Finally, in Step 3 we have

(
βm−r2

δm−(βm−r1−r2−x)

)
many ways

to choose δm− (βm− r1 − r2 − x) many 1-runs among the non-frozen 1-runs.
We first note that (

βm− r2
δm− (βm− r1 − r2 − x)

)
≤
(
βm− r2
δm− x

)
.

Indeed, as r2 ≤ β2m + δm it follows that βm − r2 ≥ β1m + δm ≥ 2δm. In addition, observe that δm −
(βm− r1 − r2 − x) ≤ δm− x as otherwise Algorithm 4 performs more than δm operations, in contradiction.
As the binomial coefficients are monotonically increasing up to (βm− r2)/2 ≥ δm the inequality follows.

Hence, the total number of strings that can be obtained from the algorithm is upper bounded by

δm∑
x=0

(
r2
x

)(
βm− r2

δm− (βm− r1 − r2 − x)

)
≤

δm∑
x=0

(
r2
x

)(
βm− r2
δm− x

)
=

(
βm

δm

)
,

where the equality follows by Vandermonde’s identity (E.g., [Tuc94, Chapter 5.5, Identity (10)]).

Armed with Propositions 5.3.4 and 5.3.5 we now show the existence of an appropriate inner code.

Proposition 5.3.8. Let 0 ≤ β1, δ ≤ 1 be parameters. Let β = 1+β1

2 . For every ε > 0 there is Mε so that

for every m > Mε there is a set C ⊆ Sm,β1
of size |C| = 2⌊mRin⌋ where

Rin = βh

(
β1

β

)
− (δ + β)h

(
δ

δ + β

)
− βh

(
δ

β

)
− ε ,

69

such that for every c ̸= c′ ∈ C it holds that any string ssub ∈ S that is a subsequence of both c and c′ is of
length |ssub| < m− δm.

Proof. We first note that the number of binary strings in Sm,β1
is exactly

(
βm
β1m

)
as we have

(
βm
β1m

)
ways to

arrange the β1m 1-runs and the β2m 2-runs.
The construction of C is done greedily. We go over all strings s ∈ Sm,β1

and add them to C one by one
as long as they do not share a common subsequence that is too long (from S) with any string that is already
in C. Propositions 5.3.4 and 5.3.5 imply that any s ∈ Sm,β1 contains at most

(
βm+δm

δm

)
many subsequences

of length m − δm from S, and each such string is a subsequence of at most
(
βm
δm

)
strings in Sm,β1 . Thus,

whenever we add a string to C we exclude at most(
βm+ δm

δm

)
·
(
βm

δm

)
other strings from being in C. Therefore, our codebook contains at least

|C| ≥
(
βm
β1m

)(
βm+δm

δm

)(
βm
δm

) ≥ 2m(βh(
β1
β)−(δ+β)h(δ

δ+β)−βh(δ
β))−O(logm)

codewords, where the inequality follows by Lemma 5.2.10. Thus, for every ε > 0 there exists large enough

m > 0 such that the constructed set C ⊂ Sm,β1
is of size 2⌊mRin⌋ where Rin = βh

(
β1

β

)
− (δ + β)h

(
δ

δ+β

)
−

βh
(

δ
β

)
− ε.

By construction, the code C can handle an adversary that, given a codeword c ∈ C, returns a subsequence
ssub ∈ S of c where |ssub| ≥ m − δm. That is, we can uniquely identify the original codeword c from ssub.
Our next goal is to show that our code can handle the usual edit distance adversary. In other words, it
can handle an adversary that performs any δm insertion and deletion (and hence it is not bound to return
a string in S). The key observation is that if we look at two different codewords c, c′ ∈ C and denote by
s a longest common subsequence between c and c′ then it must be that there exists s′ ∈ S that is also a
subsequence of c and c′ and |s| = |s′|.

Proposition 5.3.9. Let C be the code constructed in Proposition 5.3.8. For any two codewords c, c′ ∈ C it
holds that ED(c, c′) > 2δm.

Proof. Let c ̸= c′ ∈ C. Lemma 3.1.3 gives

ED(c, c′) = |c|+ |c′| − 2 |LCS(c, c′)| = 2m− 2 |LCS(c, c′)| .

Observe that if s is a longest common subsequence of c and c′ then there is a string ssub ∈ S, such that
|ssub| = |s| and ssub is also a common subsequence of c and c′. Indeed, let s be a longest common subsequence
of c and c′. Since both c and c′ start and end with 1, s also starts and ends with 1. Moreover, for every
three consecutive, equal bits in s, we can flip the second bit and the resulting string will still be a common
subsequence of maximal length (as neither c nor c′ contain a run of length 3 or more). Repeating this we
will get a string only containing 1-runs and 2-runs, i.e. a string in S.

As C was constructed so that not two codewords in C share a common subsequence (from S) of length
larger or equal to m− δm, it follows that

ED(c, c′) = 2m− 2 |LCS(c, c′)| > 2m− 2(m− δm) = 2δm .

Remark 5.3.10. Note that C can be constructed in time at most O
(
22m ·m2

)
as in the worst case we

compute the edit distance between any two possible strings.

70

5.4 Construction

In this section we give a construction of a code for the BDCp. Throughout this section we fix p.
We repeat the high level description of the construction from Section 5.1.6 (and as depicted in Figure

5.1 on page 61). We first do code concatenation. As outer code we use the one given in [HS17, Theorem
1.1] (restated as Theorem 5.2.11 here). As the inner code we use the code constructed in Proposition 5.3.8.
Then, in order to protect the concatenated codeword from a large number of deletions, we first place a
buffer of zeros between every two consecutive inner codewords. Since the decoder first looks for the buffers
in order to identify where an inner code starts and where it ends, this step helps to reduce the amount
of synchronization errors in the outer code. Secondly, we blow-up the inner codewords by replacing every
run of length 1 with a run of length N1 and every run of length 2 with a run of length N2, where the
symbols of the runs are preserved. For example, ⟨11⟩ turns into ⟨1N2⟩ and ⟨0⟩ is replaced with ⟨0N1⟩. If we
chooseN1 andN2 appropriately, then (with high probability) the decoder will identify the original run length.

We now give a formal description of our construction.

The parameters: At this point, we do not specify the parameters explicitly. We prefer to first present
the scheme and analyze it before optimizing the parameters. However, the order by which we choose the
parameters is important as there are some dependencies among them. First, we choose M1,M2, β1,MB , δout
to be fixed constants. One should have in mind that M1 < M2 are the quantities through which N1 and N2

are determined, i.e., they determine how we blow-up the different types of runs. Then we choose δin to be
larger than some quantity γ = γ(M1, T,M2, β1) that we later define (see Proposition 5.5.1). At this point,
we can compute the value of Rin, the rate of the inner code, using Proposition 5.3.8. Then, we choose a small
enough εout that determines the alphabet size of the outer code Cout. Denote with Rout the rate of Cout and
by n its block length. Finally, we pick m, the block length of the inner code, to satisfy3 Σ = {0, 1}m·Rin .

While this may seem a bit confusing the main thing to remember is that εout that was picked at the end,
can be taken to be as small a constant as we wish, or, in other words, we can pick m to be as large a constant
as we wish. This is important as we will bound the probabilities of several bad events by expressions of
the form exp(−Ω(m)) and it will be important for us to be able to pick m large enough as to make all our
estimates small.

Encoding: The process of encoding starts with the outer code. Given as input a message x ∈ ΣRoutn, we
encode it with the code given in Theorem 5.2.11 to obtain an outer codeword c(out) = (σ1, . . . , σn) ∈ Cout ⊂
Σn. Then, every symbol in c(out), σi ∈ Σ = {0, 1}m·Rin , is encoded using the inner code to a codeword that

we denote c
(in)
σi . We thus get a codeword in the concatenated code(

c(in)σ1
, . . . , c(in)σn

)
∈ Cout ◦ Cin .

Now that we have a codeword in the concatenated code we add additional layers of encoding that are crucial
for the decoding algorithm to succeed.

1. Every two adjacent inner codewords are separated by a buffer of zeros of lengthNB = ⌈MB ·m/(1− p)⌉.

2. In every inner codeword, we replace every 1-run with a run of length N1 = ⌈M1/(1− p)⌉ where the
symbol of the run is preserved.

3. In every inner codeword, we replace every 2-run with a run of length N2 = ⌈M2/(1− p)⌉ where the
symbol of the run is preserved.

After the buffering and blow-up process we have three different run lengths
⌈MB ·m/(1− p)⌉ , ⌈M1/(1− p)⌉ and ⌈M2/(1− p)⌉. Note that the buffer’s length is much larger than
⌈M1/(1− p)⌉ and ⌈M2/(1− p)⌉ since it grows with m.

3When we choose parameters we make sure that m · Rin is an integer.

71

Block length and rate: Note that as Cin contains strings in Sm,β1 , each of the n inner codewords becomes
of length ⌈M1/(1− p)⌉ · β1m + ⌈M2/(1− p)⌉ · β2m. As we have n − 1 buffers between codewords the total
block length is

(⌈M1/(1− p)⌉ · β1m+ ⌈M2/(1− p)⌉ · β2m) · n+ ⌈MB ·m/(1− p)⌉ · (n− 1) .

Since the input to the encoding is a string in ΣRoutn (and recall that |Σ| = 2Rinm) the rate R of the
construction is given by

R =
log
(
|Σ|Routn

)
β1 ⌈M1/(1− p)⌉mn+ β2 ⌈M2/(1− p)⌉mn+ ⌈MBm/(1− p)⌉(n− 1)

≥ RinRout

β1 ⌈M1/(1− p)⌉+ β2 ⌈M2/(1− p)⌉+MB/(1− p) + 1/m

≥ RinRout

β1M1/(1− p) + β2M2/(1− p) + β +MB/(1− p) + 1/m
(5.1)

=
RinRout(1− p)

β1M1 + β2M2 + β(1− p) +MB + (1− p)/m
.

We can avoid the ceilings if we consider values of p such that ⌈M1/(1− p)⌉ , ⌈M2/(1− p)⌉ and ⌈MBm/(1−
p)⌉ are integers. In this case, the rate is

R ≥ RinRout(1− p)

β1M1 + β2M2 +MB
. (5.2)

Run time analysis: By Theorem 5.2.11, the outer code can be constructed in linear time. Constructing
the inner code requires time at most O

(
22m ·m2

)
(see Remark 5.3.10). As m = log |Σ| /Rin, we get that

constructing the inner code takes time O(m2 · 22m) = |Σ|O(1)
= Oεout(1), which is constant. Thus, as all

encoding steps are done in linear time, the encoding time complexity is O(n).

5.5 Correctness and Analysis

We first present the decoding algorithm and then prove its correctness. After that, we show how to choose
the parameters to obtain Theorem 5.1.1.

Let y be the binary string received after transmitting Enc(x). The decoding procedure is given in
Algorithm 5 in page 73. Observe that the algorithm depends on some integral parameter T . When analyzing
the algorithm we will see what T has to satisfy in order for the algorithm to decode successfully with high
probability. For the time being it is enough to remember that M1 < T < M2.

Before proving the correctness of the algorithm we give its run time analysis.

Run time analysis of Algorithm 5. It is clear that Steps 1 and 2 take linear time. Step 3 runs the inner
decoding algorithm n times. As the inner decoding algorithm is a brute force operation that is run on strings
of constant length it takes constant time. Thus, the first three steps of the decoding algorithm require linear
time. In Step 4 we run the decoding algorithm of [HS17] (recall Theorem 5.2.11), that requires O(n2) time.
Therefore, the entire decoding procedure is dominated by the last step which runs in time O(n2).

5.5.1 Correctness of Decoding Algorithm

In this section, we prove that Algorithm 3 succeeds with high probability.

72

Algorithm 5: Decode with threshold T

input : Binary string y which is the output of the BDCp on ENC(x)
output: A message x̃ ∈ Σk

[1] /* Identifying buffers Step: */

Every run of zeros of length longer than MB ·m/2 is identified as a buffer.
/* Denote by s1, . . . , st the strings between the identified buffers. */

[2] /* Threshold decoding step: */

for every si do
for every run in si do

if the length of the run is longer than T then
Decode it to a run of length 2

else
Decode it to a run of length 1

end

end

end
/* Let c̃1, . . . , c̃t be the strings obtained in this step. */

[3] /* Inner code decoding step: */

Use brute-force decoding to decode each c̃i to get σ̃i. Denote σ̃out = (σ̃1, . . . , σ̃n) ∈ Σn

[4] /* Outer code decoding step: */

Run the decoding algorithm of the outer code on (σ̃1, . . . , σ̃t) to obtain x̃
Output x̃

Figure 5.2: Algorithm for decoding our code over BDCp. The algorithm is assumed to know the parameters
k, n,m,MB , T as well as Cin and Cout.

Proposition 5.5.1. Given M1, T,M2,MB , β1, δin, εin, δout (as described in Section 5.4) let Z1 ∼
Bin(⌈M1/(1− p)⌉ , 1− p) and Z2 ∼ Bin(⌈M2/(1− p)⌉ , 1− p). Denote

P (1)→(2) := Pr[Z1 ≥ T + 1],

P (1)→(0) := Pr[Z1 = 0],

P (2)→(1) := Pr[Z2 ≤ T],

P (2)→(0) := Pr[Z2 = 0] ,

and define
γ := β1 · P (1)→(2) + β2 · P (2)→(1) + (2β1 + β2)P

(1)→(0) + 4β2P
(2)→(0) (5.3)

(the reason for this definition of γ is revealed later). If γ < δin, then there exists ϵ0 =
ϵ0(M1, T,M2,MB , β1, δin, δout) such that for every εout < ϵ0 the following holds. Let x ∈ ΣRoutn (where
|Σ| = Oεout

(1)) be a message and let y be the string obtained after encoding x using our code and transmit-
ting it through the BDCp. Then, Algorithm 5 returns x with probability 1 − exp (−Ω(n)) when given y as
input.

Observe that as ϵ0 = ϵ0(M1, T,M2,MB , β1, δin, δout), it does not depend on m and n. The rest of
Section 5.5.1 is devoted to proving Proposition 5.5.1. We first discuss the structure of the proof and prove
relevant lemmas. The actual proof is given at the end of this section.

Let σout = (σ1, . . . , σn) ∈ Σn be the result of encoding x with the outer code. I.e. the first step before

concatenating with our inner code. Let c
(in)
σi be the result of encoding σi with the inner code.

The decoding algorithm succeeds if the decoding procedure of the outer code, which is executed in Step 4
of the algorithm, outputs the correct message. This happens if ED(σ(out), σ̃(out)) ≤ δoutn. To prove that this

73

holds with high probability, we classify the errors that can be introduced at each step of the algorithm and
bound the probability that we get too many of them.

There are three error types that increase the edit distance between σ(out) and σ̃(out):

1. Deleted buffer: This happens when the channel deleted too many bits from a buffer so that less than
MBm/2 bits survived the channel, and we did not identify this buffer in Step 1 of the algorithm.

2. Spurious buffer: In this case the algorithm mistakenly identifies a buffer inside an inner codeword. This
might happen if there are many consecutive runs of the symbol 1 that were deleted by the channel. As
a result, a long run of the symbol 0 is created and the algorithm will mistakenly identify it as a buffer
in Step 1.

3. Wrong inner decoding: Here the decoding of the inner code returns a different inner codeword. This

error happens if the edit distance between an inner codeword c
(in)
σi and the corresponding c̃j is larger4

than δinm.

In the following subsections, we analyze each error type separately and show that each happens with
probability exp(−Ω(m)) per inner codeword. Our analysis of the first two error types is similar to [GL18],
but our analysis of the third case is different.

Deleted Buffer

Proposition 5.5.2. Let rB be a buffer in Enc(x). The probability that the decoding algorithm fails to identify
it as a buffer in Step 1 is at most exp(−Ω(m)).

Proof. Recall that the length of a buffer is ⌈MBm/(1 − p)⌉. Therefore the expected number of bits that
survive the transmission through the BDCp is at least MBm. The decoder misses a buffer if the number
of buffer bits that survived the transmission is smaller than MBm/2. Let Z denote the random variable
that corresponds to the number of bits that survived the transmission of rB through the BDCp. Clearly,
Z ∼ Bin(⌈MBm/(1 − p)⌉, (1 − p)). By using the Chernoff bound given in Lemma 5.2.7, we get that this
error happens with probability

Pr

[
Z <

MBm

2

]
= Pr

[
Z <

(
1− 1

2

)
MBm

]
< exp

(
−1

8
MBm

)
.

Spurious Buffer

Recall that this can happen if many consecutive runs of the symbol 1 were deleted by the channel, so a
long run of the symbol 0 is created. If the length of this long run is longer than MBm/2 then the decoder
mistakenly identifies it as a buffer.

Proposition 5.5.3. Let c
(in)
σi be an inner codeword. Denote by Blow(c

(in)
σi) the string obtained by blowing up

the runs in c
(in)
σi according to the encoding procedure. The probability that the decoder in Step 1 identifies a

buffer inside the string obtained by transmitting Blow(c
(in)
σi) through the BDCp is at most exp(−Ω(m)).

Proof. We first compute the probability that a run is deleted. Recall that after encoding the message we
transmit runs of length ⌈M1/(1− p)⌉ or ⌈M2/(1− p)⌉. The probability that all the bits from a run of length
⌈M1/(1− p)⌉ are deleted by the BDCp is

p⌈M1/(1−p)⌉ ≤ pM1/(1−p) ≤ e−M1 .

4Note that it may be the case that due to decoding errors, the ith inner codeword was interpreted as the jth codeword by
the decoder (e.g. if a buffer was deleted or a spurious buffer was introduced).

74

Equivalently, the probability that all the bits from a run of length ⌈M2/(1− p)⌉ are deleted by the BDCp is

p⌈M2/(1−p)⌉ ≤ pM2/(1−p) ≤ e−M2 .

Suppose that ℓ consecutive runs of the bit 1 are deleted. We consider two cases.
First, consider the case where ℓ > mMB/4M2. The probability that exactly ℓ runs of the symbol 1 are

deleted is at most (the highest probability is obtained when all the ℓ runs are ⌈M1/(1− p)⌉-runs)

p⌈M1/(1−p)⌉ℓ ≤ exp (−M1ℓ) ≤ exp (−M1MBm/4M2) = exp (−Ω (m)) .

The probability that there exist ≥ mMB/(4M2) consecutive runs of the symbol 1 that are deleted in a word
of length m is at most O(m2) · exp (−Ω (m)) = exp(−Ω(m)) (we just need to pick the start and end point of
the consecutive runs).

Now, if ℓ ≤ mMB/(4M2) consecutive runs of 1’s are deleted, then there are ℓ+ 1 runs of zeros that are
merged to a single run. Suppose that all the merged runs were 2-runs (so that the length of the run of the
symbol 0 that was created is maximized). Denote by Z the random variable that corresponds to the number
of bits that survived the transmission of these ℓ+1 runs. It holds that Z ∼ Bin ((ℓ+ 1) ⌈M2/ (1− p)⌉ , 1− p)
and

E [Z] = (ℓ+ 1) ⌈M2/(1− p)⌉ (1− p)

≤ (ℓ+ 1)(M2 + 1)

≤ (mMB/(4M2) + 1)(M2 + 1)

(∗)
≤ MBm+ 4M2

3

<
2

5
MBm

where inequality (∗) holds for M2 ≥ 3 and the last inequality holds for large enough5 m. Thus, we get by
the Chernoff bound that the probability that Z ≥ MBm/2 is

Pr

[
Z ≥ MBm

2

]
= Pr

[
Z ≥

(
1 +

1

4

)
2

5
MBm

]
≤ exp

(
− 1

120
MBm

)
.

Hence, the probability that specific ℓ ≤ mMB/(4M2) consecutive runs of the symbol 1 were deleted and a
spurious buffer was created is at most exp(−MBm/120). Therefore, for such an ℓ, the probability that there
exists a spurious buffer in an inner codeword of lengthm is at mostm2·exp(−MBm/120) ≤ exp(−MBm/240),
for large enough m.

Remark 5.5.4. Proposition 5.5.3 upper bounds the probability that a spurious buffer is identified in a inner
codeword. However, it may be the case that the decoder identifies two or more spurious buffers inside a
single inner codeword. This is not an issue as the maximal number of spurious buffer inside an inner
codeword is ≤ 2/MB, and therefore the expected number of spurious buffers in an inner codeword is at most
(2/MB) · exp(−Ω(m)) = exp(−Ω(m)).

Wrong Inner Decoding

This is the most difficult case to analyze. The inner decoding procedure might output a wrong codeword

when the edit distance between an inner codeword c
(in)
σi and the corresponding word that was obtained at

Step 2 of the algorithm, c̃j , is larger than δinm. The next proposition shows that the probability of this
event is exponentially small in m.

5Recall that by the way that we choose our parameters we pick m at the end so that we can make it as large a constant as
we wish.

75

Proposition 5.5.5. Assume the setting of Proposition 5.5.1. Let c
(in)
σi be an inner codeword. Assume that

the buffers before and after c
(in)
σi were detected correctly and that there were no spurious buffers in between.

Suppose that c̃j is the corresponding string obtained at Step 2 of the decoding algorithm on sj. Then,6

Pr
[
ED

(
c(in)σi

, c̃j

)
> δinm

]
≤ exp(−Ω(m)) .

We prove this claim in the remainder of this subsection, but first we give some intuition and introduce
some important notions. Recall that a run rj in an inner codeword is replaced with a run of length N1 =
⌈M1/(1− p)⌉ or N2 = ⌈M2/(1− p)⌉. Let Zj be the random variable corresponding to the number of
bits from this blown-up run that survived the transmission through the BDCp. If |rj | = 1 then, Zj ∼
Bin (⌈M1/(1− p)⌉ , 1− p). If |rj | = 2 then, Zj ∼ Bin (⌈M2/(1− p)⌉ , 1− p). Intuitively, in Step 2 the
algorithm reads every Zj and decides according to the threshold T if Zj corresponds to a run of length
1 or 2. However, it may be the case that, say, Zj+1 = 0 and then the algorithm will mistakenly base its
decision according to the value of Zj + Zj+2, etc. For example, consider an initial string ⟨00100⟩. After
the blow-up, we transmit the string ⟨0N21N10N2⟩. Suppose that the middle run (the run consisting of the
symbol 1) was deleted by the channel. The decoder then faces a long run of 0’s and treats it as a single run
and in particular, it will decode it as ⟨0⟩ or ⟨00⟩, or even as a spurious buffer. This motivates the following
definitions.

Definition 5.5.6. When Zj = 0 we say that rj was deleted by the channel.

Remark 5.5.7. We shall make a distinction between runs that were deleted by the channel and those that
our algorithm “deleted” so whenever we refer to a deleted bit we will stress which process caused the deletion.

Definition 5.5.8. For every j ∈ [βm], let bj be the bit appearing in rj. We denote

r′j =

 ⟨bjbj⟩ if Zj > T
⟨bj⟩ if 0 < Zj ≤ T
⟨⟩ if Zj = 0

.

In other words, r′j is what Step 2 of our decoding algorithm would output when given Zj as input. In

particular,
∣∣r′j∣∣ can be 0, 1, 2, depending on Zj . Note that if

∣∣r′j∣∣ = 0 then it means that the channel deleted
the run.

For the next definition, we remind the reader that in our setting the total number of runs in an inner
codeword (and hence also in a blown-up word) is β1m+ β2m = βm.

Definition 5.5.9. A set I ⊂ [βm], |I| ≥ 2, is called a maximal merged set if the following conditions hold:

1. For every i ∈ I it holds that Zi > 0.

2. All the bits from I are merged into one run.

3. There is no set J such that I ⊊ J and the bits from J are merged into one run.

For example, consider the following consecutive runs that were sent through the channel
⟨0N21N10N11N20N11N10N2⟩. Suppose that the third run and the fifth run were deleted by the channel
and the rest of the runs were not deleted by the channel. The maximal merged set corresponding to this
deletion pattern is I = {2, 4, 6}.

Claim 5.5.10. Let I ⊂ [βm] be a maximal merged set. Denote j = min I and k = max I. Then, all the
runs rj+1, rj+3, . . . , rk−1 were deleted by the channel.

Proof. Assume w.l.o.g. that rj and rk are runs of the symbol 0. For every i ∈ {j + 1, j + 3, . . . , k − 1}, ri is
a run of symbol 1 and must be deleted by the channel. Otherwise, I will not be a merged set.

6Recall that we use a different index j to indicate that it may be the case that spurious buffers were found earlier, in some
other inner codeword, or that some earlier buffers were mistakenly deleted.

76

Definition 5.5.11. Let I ⊂ [βm] be a maximal merged set and set j = min I. We denote by r̃j the result of
Step 2 of our decoding algorithm on this merged run.

Remark 5.5.12. It is important to remember that rj is the original run, r′j is what the algorithm would
return when given Zj as input, and r̃j is what the algorithm actually returns when reading the bits of the
merged run.

We can now see that some bits that survived the channel were deleted by our algorithm as it failed to
realize that they came from different runs. This is captured by the next definition.

Definition 5.5.13. Let I ⊂ [βm] be a maximal merged set. We say that the decoding algorithm deleted∣∣r′j∣∣− |r̃j |+
∑

i∈I\{j} |ri| bits in the set I.

As
∣∣r′j∣∣ ≤ |r̃j | the following claim is obvious.

Claim 5.5.14. Let I be a maximal merged set and set j = min I. The number of bits deleted by the decoding
algorithm in the merged set I is at most

∑
i∈I\{j} |ri|.

We next extend Claim 5.5.14 and bound the total number of bits that our algorithm deletes in an inner
codeword. We assume that the buffers before and after the word were correctly identified by the decoding
algorithm in Step 1.

Claim 5.5.15. Let D ⊂ [βm] be the indices of the runs that were deleted by the channel. If the last run
was not deleted, i.e., βm /∈ D, then the number of bits that were deleted by the decoding algorithm is at most∑

i∈D |ri+1|.
If the last run was deleted by the channel, i.e., βm ∈ D, then the number of bits deleted by the algorithm

is at most
∑

i∈D\{βm} |ri+1|+ 2.

Proof. We first deal with the case where some runs were merged with the bits in the buffers (before or after
the word). This happens if the first or the last run were deleted by the channel. If 1 ∈ D then let ri′ to be
the first run of the symbol 1 that was not deleted by the channel. Then, all runs of the symbol 0 before ri′

were merged to the left buffer. Therefore, DL := {1, 3, . . . , i′ − 2} ⊆ D and the decoding algorithm deleted
exactly |r2|+ . . .+ |ri′−1| =

∑
ℓ∈DL

|rℓ+1| bits (since all these runs were considered as part of the buffer).
Similarly, if βm ∈ D define ri′ to be the last run of the symbol 1 that was not deleted by the channel.

In this case all the runs of 0’s after ri′ were merged to the right buffer. In this case, DR := {i′ + 2, i′ +
4, . . . , βm} ⊆ D and the decoding algorithm deleted exactly |ri′+1|+ . . .+ |rβm−1| ≤ 2+

∑
ℓ∈DR\{βm} |rℓ+1|

bits.
We now account for inner deletions (i.e., those that did not cause runs to merge with buffers). These

deletions may generate what we called maximal merged sets. Let I1, . . . , It be all maximal merged sets,
excluding those that were merged with buffers. Denote ji = min Ii and ki = max Ii and let7 Di := D ∩ [ji +
1, ki − 1] for i ∈ [t].

According to Claim 5.5.10 it holds that {ji + 1, ji + 3, . . . , ki − 1} ⊆ Di. Thus, Ii ⊆ {ji, ji + 2, . . . , ki}.
Claim 5.5.14, implies that the number of bits deleted by the algorithm in Ii is at most

∑
ℓ∈Ii\{ji} |rℓ|. Thus,

the total number of bits deleted by the algorithm, excluding those bits from DL ∪ DR, is bounded from
above by

t∑
i=1

∑
ℓ∈Ii\{ji}

|rℓ| ≤
t∑

i=1

∑
ℓ∈Di

|rℓ+1| ≤
∑

i∈D\(DL∪DR)

|ri+1| .

Taking into account the deleted bits from DL ∪DR the claim follows.

We now use concentration bounds to argue about the expected number of bits that were deleted and the
effect on the edit distance between the original inner codeword and the one returned by the algorithm in
Step 2.

We first study the probability that rj ̸= r′j (recall Definition 5.5.8):

7Note that it may be the case that the set D′ := D \ (∪iDi) is not the empty set. In this case the indices in D′ correspond
to runs that were deleted by the channel but did not cause a merge. E.g., if two consecutive runs are deleted by the channel
and the runs before and after were not deleted, then this does not make our algorithm to delete additional bits.

77

1. If |rj | = 1 then there are two possible types of errors:

(a)
∣∣r′j∣∣ = 2: We denote the probability for this to happen by

P (1)→(2) := Pr[Zj ≥ T + 1] .

We next give two estimates of this probability, one is an exact calculation and the other is an
upper bound. Direct calculation gives

P (1)→(2) = Pr[Zj ≥ T + 1] =

⌈ M1
1−p⌉∑

i=T+1

(⌈ M1

1−p

⌉
i

)
(1− p)i · p⌈

M1
1−p⌉−i . (5.4)

We next would like to use the Poisson distribution to give a simpler bound. For this we would
like to use Theorems 5.2.5 and 5.2.6.

Lemma 5.5.16. Let q ≥ 1− p and T ≥ M1 + q. It holds that

P (1)→(2) ≤ 1− e−M1−q
T∑

i=0

(M1 + q)i

i!
(5.5)

Moreover, the function f(q) := 1− e−M1−q
∑T

i=0
(M1+q)i

i! is monotonically increasing in q.

Proof. Define Y (j, x) ∼ Bin(j, (M1 + x)/j). Observe that E[Y (j, x)] = M1 + x. Denote n′ =
⌈M1/(1− p)⌉. First note that

Pr[Zj ≥ T + 1] ≤ Pr[Y (n′, 1− p) ≥ T + 1]

since the expectation of Y (n′, (1−p)) isM1+(1−p) whereas the expectation of Zj is ≤ M1+(1−p)
and they are both binomial distributions on n′ trials. By the same reasoning we have that for
every j ≥ n′

Pr[Y (j, (1− p)) ≥ T + 1] ≤ Pr[Y (j, q) ≥ T + 1] .

Let P (x) ∼ Poisson(x). Theorem 5.2.5 implies that limj→∞ Y (j, x) = P (M1 + x). Therefore,

P (1)→(2) = Pr [Zj ≥ T + 1] ≤ Pr[Y (n′, q) ≥ T + 1]

= 1− Pr [Y (n′, q) ≤ T]

≤ 1− lim
j→∞

Pr [Y (j, q) ≤ T]

= 1− Pr [P (M1 + q) ≤ T]

= 1− e−M1−q
T∑

i=0

(M1 + q)i

i!
,

where the second inequality follows from Theorem 5.2.6 due to monotonicity for T ≥ M1 + q.

Note that the monotonicity of f(q) = 1− e−M1−q
∑T

i=0
(M1+q)i

i! follows from Lemma 5.2.4.

(b)
∣∣r′j∣∣ = 0: Here the blown-up run was completely deleted by the channel. The probability for this

to happen is P (1)→(0) := Pr[Zj = 0]. It holds that,

P (1)→(0) = Pr[Zj = 0] = p⌈
M1
1−p⌉. (5.6)

It also holds that for any p ∈ (0, 1),

P (1)→(0) = Pr[Zj = 0] ≤ e−M1 . (5.7)

78

2. Similarly, when |rj | = 2 there are two cases to consider:

(a)
∣∣r′j∣∣ = 1: The probability for this to happen is P (2)→(1) := Pr[Zj ≤ T]. As before, the exact
calculation is

P (2)→(1) = Pr[Zj ≤ T] =

T∑
i=0

(⌈ M2

1−p

⌉
i

)
(1− p)i · p⌈

M2
1−p⌉−i . (5.8)

Similarly to the calculations for P (1)→(2), we would like to upper bound P (2)→(1) using a simpler
expression coming from the Poisson distribution.

Lemma 5.5.17. For every p and for T ≤ M2 − 1, it holds that

P (2)→(1) ≤ e−M2

T∑
i=0

M i
2

i!
. (5.9)

Moreover, for every q ≥ p such that M2/(1− q) is an integer, it holds that

P (2)→(1) ≤
T∑

i=0

(M2

1−q

i

)
(1− q)i · q

M2
1−q−i (5.10)

Proof. For a natural number 1 ≤ i, let Y (i) ∼ Bin (i,M2/i). Let P ∼ Poisson(M2). Observe
that Pr[Zj ≤ T] ≤ Pr[Y (⌈M2/(1− p)⌉) ≤ T] as the latter can only have smaller expectation.
Since limi→∞ Y (i) ∼ P and due to the monotonicity implied by Theorem 5.2.6 we get that when
T ≤ M2 − 1, for every p it holds that:

P (2)→(1) = Pr[Zj ≤ T] ≤ Pr[Y (⌈M2/(1− p)⌉) ≤ T]

≤ Pr[Y (⌈M2/(1− q)⌉) ≤ T]

= Pr[Y (M2/(1− q)) ≤ T]

≤ lim
i→∞

Pr[Y (i) ≤ T]

= Pr[P ≤ T]

= e−M2

T∑
i=0

M i
2

i!
,

where the second and the third inequalities hold due to Theorem 5.2.6 for T ≤ M2− 1. Note that
the second inequality proves the second statement in the lemma.

(b)
∣∣r′j∣∣ = 0: The probability for this to happen is P (2)→(0) := Pr[Zj = 0]. It holds that,

P (2)→(0) = Pr[Zj = 0] = p⌈
M2
1−p⌉ (5.11)

and for every p ∈ (0, 1) we have

P (2)→(0) = Pr[Zj = 0] ≤ e−M2 . (5.12)

Recall that c
(in)
σi is an inner codeword that consists of exactly β1m 1-runs and β2m 2-runs. Also recall that

we blow-up an inner codeword, c
(in)
σi , and send it through the BDCp. Suppose that Step 1 of the algorithm

identified the i− 1’th and the i’th buffer and that there were no spurious buffers in between. Let sj be the
binary string corresponding to this decoding window obtained in Step 1, and let c̃j be the result of Step 2
of the algorithm on sj .

79

For every j ∈ [βm− 1], Let Xj be the random variable defined by

Xj =

0 if |rj | =

∣∣r′j∣∣
1 if Zj > 0 and |rj | ≠

∣∣r′j∣∣
|rj |+ |rj+1| if Zj = 0

.

Similarly define Xβm to be

Xβm =

0 if |rβm| =

∣∣∣r′βm∣∣∣
1 if Zβm > 0 and |rβm| ≠

∣∣∣r′βm∣∣∣
|rβm|+ 2 if Zβm = 0

.

Claim 5.5.18. Let c
(in)
σi be an inner codeword. Assume that the buffers before and after c

(in)
σi were detected

correctly and assume that there were no spurious buffers in between. Suppose that c̃j is the corresponding
string obtained at Step 2 of the decoding algorithm on sj. Then,

ED
(
c(in)σi

, c̃j

)
≤

βm∑
j=1

Xj .

Proof. If rj is a 1-run and r′j is a 2-run then there was an insertion. Equivalently, if rj is a 2-run and r′j
is a 1-run then there was a deletion. If a run was completely deleted by the channel then according to
Claim 5.5.15, at the worst case scenario, the following run is also deleted by the algorithm. The definition
of the Xj ’s accounts for all that.

Note that we may do over counting in some scenarios, e.g., if rj+1 ̸= r′j+1 and rj was deleted by the
channel then Xj +Xj+1 = |rj |+ |rj+1|+ 1 but the edit distance is at most |rj |+ |rj+1|. This over counting
makes the upper bound less tight.

Set X =
∑βm

j=1 Xj . We next upper bound and lower bound E[X].

Claim 5.5.19. It holds that
E [X] ≥ ξm ,

where
ξ = β1

(
P (1)→(2) + 2 · P (1)→(0)

)
+ β2

(
P (2)→(1) + 3 · P (2)→(0)

)
.

Proof. For every Xj such that rj is a 1-run we have

E[Xj] ≥ 1 · P (1)→(2) + 2 · P (1)→(0) ,

where we used the fact that |rj |+ |rj+1| ≥ 2. Similarly, for every Xj such that rj is a 2-run we have

E[Xj] ≥ 1 · P (2)→(1) + 3 · P (2)→(0) .

As there are exactly β1 1-runs and β2 2-runs, the claim follows.

Claim 5.5.20. It holds that
E [X] ≤ γm+ P (1)→(0) ,

where,
γ = β1 · P (1)→(2) + β2 · P (2)→(1) + (2β1 + β2) · P (1)→(0) + 4β2 · P (2)→(0) , (5.13)

is the same γ as in Proposition 5.5.1.

For the proof we shall denote with Xi,k
j the random variable Xj when rj is an i-run and rj+1 is a k-run.

80

Proof. Suppose that rβm is a 1-run. As will be explained later, this is the worst case, i.e., the upper bound
that we prove on E[X] is largest in this case. Denote by Y i,k ⊆ [βm− 1] the set of indices j ∈ [βm− 1] such
that rj is an i-run and rj+1 is a k-run. From linearity of expectation it follows that

E[X] =
∑

j∈Y 1,2

E
[
X1,2

j

]
+
∑

j∈Y 1,1

E
[
X1,1

j

]
+
∑

j∈Y 2,1

E
[
X2,1

j

]
+
∑

j∈Y 2,2

E
[
X2,2

j

]
+ E [Xβm] .

Let λ1 be such that
∣∣Y 1,2

∣∣ = λ1m. Thus,
∣∣Y 1,1

∣∣ = (β1 − λ1)m− 1 (where the 1 is subtracted because of the
last run, which we assumed is a 1-run). By definition we have that∑

j∈Y 1,2

E
[
X1,2

j

]
=
(
1 · P (1)→(2) + 3 · P (1)→(0)

)
· λ1m

and ∑
j∈Y 1,1

E
[
X1,1

j

]
=
(
1 · P (1)→(2) + 2 · P (1)→(0)

)
· ((β1 − λ1)m− 1) .

Observe that ∑
j∈Y 1,2

E
[
X1,2

j

]
+
∑

j∈Y 1,1

E
[
X1,1

j

]
+ E[Xβm]

=
(
1 · P (1)→(2) + 3 · P (1)→(0)

)
· λ1m+

(
1 · P (1)→(2) + 2 · P (1)→(0)

)
· ((β1 − λ1)m− 1)

+
(
1 · P (1)→(2) + 3 · P (1)→(0)

)
= P (1)→(2) · β1m+ P (1)→(0) · (2β1m+ λ1m+ 1) .

As there are exactly β2m 2-runs, it holds that 0 ≤ λ1 ≤ β2. Hence, this sum is maximized for λ1 = β2. We
thus have that ∑

j∈Y 1,2

E
[
X1,2

j

]
+
∑

j∈Y 1,1

E
[
X1,1

j

]
+ E[Xβm]

≤β1mP (1)→(2) + (2β1 + β2)mP (1)→(0) + P (1)→(0) .

(5.14)

Similarly, let λ2 be such that
∣∣Y 2,1

∣∣ = λ2m. Thus,
∣∣Y 2,2

∣∣ = (β2 − λ2)m. It holds that∑
j∈Y 2,1

E
[
X2,1

j

]
=
(
1 · P (2)→(1) + 3 · P (2)→(0)

)
· λ2m

and ∑
j∈Y 2,2

E
[
X2,2

j

]
=
(
1 · P (2)→(1) + 4 · P (2)→(0)

)
· (β2 − λ2)m .

Since the sum
∑

j∈Y 2,1 E
[
X2,1

j

]
+
∑

j∈Y 2,2 E
[
X2,2

j

]
is maximized for λ2 = 0 we get,∑

j∈Y 2,1

E
[
X2,1

j

]
+
∑

j∈Y 2,2

E
[
X2,2

j

]
≤ β2mP (2)→(1) + 4β2mP (2)→(0) . (5.15)

Combining (5.14) and (5.15) we obtain

E [X] =
∑

j∈Y 1,2

E
[
X1,2

j

]
+
∑

j∈Y 1,1

E
[
X1,1

j

]
+ E[Xβm] +

∑
j∈Y 2,1

E
[
X2,1

j

]
+
∑

j∈Y 2,2

E
[
X2,2

j

]
≤ β1 · P (1)→(2) + β2 · P (2)→(1) + (2β1 + β2) · P (1)→(0) + 4β2 · P (2)→(0) + P (1)→(0)

= γm+ P (1)→(0) , (5.16)

81

as claimed.
Note that if rβm was a 2-run, then

∣∣Y 1,2
∣∣+ ∣∣Y 1,1

∣∣ = β1m (no need to subtract 1 since the last run is now
a 2-run) and we have,∑

j∈Y 1,2

E
[
X1,2

j

]
+
∑

j∈Y 1,1

E
[
X1,1

j

]
≤ β1mP (1)→(2) + (2β1 + β2)mP (1)→(0) .

In this case, we have that
∣∣Y 2,1

∣∣ + ∣∣Y 2,2
∣∣ = β2m − 1. Thus, if we let λ2 be such that

∣∣Y 2,1
∣∣ = λ2m and∣∣Y 2,2

∣∣ = (β2 − λ2)m− 1 then∑
j∈Y 2,1

E
[
X2,1

j

]
+
∑

j∈Y 2,2

E
[
X2,2

j

]
+ E[Xβm]

=
(
1 · P (2)→(1) + 3 · P (2)→(0)

)
· λ2m+

(
1 · P (2)→(1) + 4 · P (2)→(0)

)
· ((β2 − λ2)m− 1)

+
(
1 · P (2)→(1) + 4 · P (2)→(0)

)
= P (2)→(1) · β2m+ P (2)→(0) · (4β2m− λ2m) ,

and this sum is maximized for λ2 = 0. We thus have that∑
j∈Y 2,1

E
[
X2,1

j

]
+
∑

j∈Y 2,2

E
[
X2,2

j

]
+ E[Xβm] ≤ P (2)→(1)β2m+ 4P (2)→(0)β2m

Then, if rβm is a 2-run we have

E[X] ≤ β1mP (1)→(2) + (2β1 + β2)mP (1)→(0) + P (2)→(1)β2m+ 4P (2)→(0)β2m

= γm < γm+ P (1)→(0) .

Thus, for any constant γ′ > γ there exist a constant Mγ′ such that for all m > Mγ′ it holds that

E[X] ≤ γm+ P (1)→(0) < γ′m .

In the following claim we use concentration bound to show that the probability that X is greater than γ′m,
for γ′ > γ, is exponentially small in m and then we conclude that decoding of an inner codeword succeeds
with high probability.

Claim 5.5.21. For any γ′ > γ and for every constant ν > 0 it holds that for a large enough m,

Pr[X > (1 + ν)γ′m] < exp

(
−ν2ξ2m

8β

)
= exp(−Ω(m)) ,

where ξ is as in Claim 5.5.19.

Proof. First note that
Pr[X > (1 + ν)γ′m] ≤ Pr[X > (1 + ν)E[X]] ,

where by Claim 5.5.20 the inequality holds for large enough m. The delicate point is to notice that the Xj ’s
are independent. This is because each Xj is determined solely according to the value of Zj (indeed, its value
only depends on whether Zj = 0, Zj ≤ T or Zj > T), and the random variables Zj ’s are independent by
the definition of the binary deletion channel. For every Xj it holds that 0 ≤ Xj ≤ 4 and if we set t = νE[X]
and apply Theorem 5.2.9 then we get that

Pr [X > (1 + ν)E[X]] < exp

(
−2ν2(E[X])2

βm · 42

)
≤ exp

(
−2ν2(ξm)2

16βm

)
= exp

(
−ν2ξ2m

8β

)
,

82

where the second inequality follow from Claim 5.5.19.

We are now ready to prove the main claim of this subsection, Proposition 5.5.5.

Proof of Proposition 5.5.5. By Claim 5.5.18 X is an upper bound on ED(c
(in)
σi , c̃j). Thus,

Pr
[
ED

(
c(in)σi

, c̃j

)
> δinm

]
≤ Pr[X > δinm] .

By the assumption in Proposition 5.5.1 we have that δin > γ. We thus get that

Pr [X > δinm] = Pr

[
X >

(
1 +

δin − γ

δin + γ

)
δin + γ

2
m

]
≤ exp

(
−
(
δin − γ

δin + γ

)2
ξ2

8β
m

)
,

where the last inequality follows from Claim 5.5.21 by plugging ν = δin−γ
δin+γ and γ′ = δin+γ

2 . This completes
the proof of Proposition 5.5.5.

Remark 5.5.22. Observe that all the parameters involved in the upper bound in Proposition 5.5.5, namely,
γ, ξ, β are independent of m. That is, they only depend on δin,M1,M2, T and β1.

We are now ready to prove Proposition 5.5.1.

Proof of Proposition 5.5.1. We would like to show that with high probability, the edit distance between the
original outer codeword σ(out) and the string σ̃(out), obtained after Step 3 of the decoding algorithm, is
smaller than δoutn. To prove this we shall analyze the contribution of each of the error types (deleted buffer,
spurious buffer and wrong inner decoding) on the edit distance.

A deleted buffer causes two inner codewords to merge and thus be decoded incorrectly by the inner code’s
decoding algorithm. When considering the effect of this on the edit distance between σ(out) and σ̃(out), this
introduces two deletions and one insertion. Similarly, a single spurious buffer introduces one deletion and
two insertions, since an inner codeword is split into two parts. Likewise, ℓ spurious buffers inside an inner
codeword introduce 1 deletion and possibly ℓ+1 insertions. A wrong inner decoding causes just one deletion
and one insertion. Therefore, every error type increases the edit distance between the original outer codeword
σ(out) and σ̃(out) by at most three.

As mentioned, the outer decoding algorithm fails if ED
(
c(out), c̃(out)

)
> δoutn. Thus, for this to happen,

at least one of the following bad events must occur:

1. There were at least δoutn/9 deleted buffers.

2. There were at least δoutn/9 spurious buffers.

3. There were at least δoutn/9 inner codewords that were decoded incorrectly even though they did not
have spurious buffers and their buffers were identified.

We first treat events (1) and (3). We saw in Propositions 5.5.2 and 5.5.5 that for every inner code-
word, each error type happens with probability exp(−Ω(m)). Since δout is a fixed constant, there exists
a large enough m so that exp(−Ω(m)) ≤ δout/10 for each error type. An important observation is that,
similarly to Remark 5.5.22, the constants in the exp(−Ω(m)) in the different propositions depend only on
δin, β1,M1, T,M2,MB which are fixed constants and are not related to the outer code. Thus, we can choose
a small enough εout, which determines a large enough m, so that the probability for each error type is
≤ δout/10. By the Chernoff bound given in Lemma 5.2.7, for a large enough n, each of the two bad events
happens with probability exp(−Ω(n)).

We now turn to event (2). By Proposition 5.5.3 and Remark 5.5.4, the number of spurious buffers in every
inner codewrod is between 0 and 2/MB and the expected number of spurious buffers in an inner codeword
is exp(−Ω(m)). Again, we can choose a small enough εout, which determines a large enough m, so that the
expected number of spurious buffers in an inner codeword is ≤ δout/10. By the independence of the BDCp,
we can apply the Hoeffding bound (Theorem 5.2.9) and get that the probability that there are more than
δoutn/9 spurious buffers is exp(−Ω(n)).

In conclusion, Algorithm 5 succeeds with probability 1− exp(−Ω(n)) as claimed.

83

5.5.2 Proof of Theorem 5.1.1

We now prove our main theorem.

Proof of Theorem 5.1.1. Our goal is to maximize the rate given in Equation (5.1) while assuring that the
parameters that we pick guarantee successful decoding with high probability. Recall that the order by which
we choose the parameters in our construction is the following. First, we choose M1, T,M2, β1,MB , δout to be
fixed constants. Then, we compute upper bounds on P (1)→(2), P (1)→(0), P (2)→(1), P (2)→(0). Plugging these
upper bounds to Equation (5.3), we get an upper bound8 on γ which we denote by γ̃. Note that γ̃ depends
only on M1, T,M2, β1, and p. Then we choose δin to be larger than γ̃, and in particular we have γ ≤ γ̃ < δin.
Proposition 5.5.1 guarantees that if we choose a small enough εout, then our decoding algorithm will succeed
with high probability. Thus, we only have to make sure that the rate that we get satisfies the statement in
the theorem. We calculate the value of Rin using Proposition 5.3.8 and then use it to calculate the overall
rate.9

We consider several regimes of p and for each regime we choose suitable parameters.

Case p ≥ 0.9: In this case we choose:

M1 = 5.41,M2 = 22.8, β1 = 0.522,MB = 10−5, δout = 2−20 and δin = 0.01052 ,

and set T = 12. From Proposition 5.3.8 we get that, for our choice of parameters, the rate of the inner code
is Rin = 0.5229. The upper bounds for P (1)→(0), P (2)→(1), P (2)→(0) are computed using Equations (5.7),
(5.9), and (5.12). To upper bound P (1)→(2), we use Equation (5.5) given in Lemma 5.5.16 with q = 0.1.
Observe that as we assume p ≥ 0.9 it follows that q ≥ 1− p.

One can plug in the upper bounds to Equation (5.3) and observe that γ̃ < δin. Proposition 5.5.1
guarantees that for a small enough εout our decoding algorithm succeeds with high probability. To calculate
the rate we use Equation (5.1). For a large enough m (e.g. m > 105) we obtain

0.5229(1− p)

8.27323 + 0.761(1− p) + (1− p)/m
≥ 0.5229(1− p)

8.34933
>

(1− p)

16
.

Case 0.57 < p < 0.9: For this regime we use the parameters

M1 = 5.59,M2 = 23.5, β1 = 0.53,MB = 10−5, δout = 2−20 and δin = 0.008013 ,

and set T = 13. We get that the rate of the inner code is Rin = 0.55224. We first note that the calculations
used to upper bound P (1)→(0), P (2)→(1), P (2)→(0) were obtained by using Equations (5.6), (5.8) and (5.11)
with p = 0.9. This can be done since Equations (5.6) and (5.11) are clearly monotonically increasing in p
and we are considering smaller values of p. Also, observe that since M2/(1− 0.9) = 235 is an integer, then
by Equation (5.10) given in Lemma 5.5.17, for every p ≤ 0.9,

P (2)→(1) ≤
T∑

i=0

(M2

1−0.9

i

)
(1− 0.9)i · (0.9)

M2
1−0.9−i ,

which is exactly what we get from Equation (5.8) with p = 0.9. Now, to upper bound P (1)→(2) we use
Equation (5.5) with q = 1 − 0.57, which is fine as p > 0.57 and thus q > 1 − p. As before, calculations
show that γ̃ < δin. Hence for a small enough εout our decoding algorithm succeeds with high probability by
Proposition 5.5.1. Plugging the parameters into Equation (5.1) and letting m be large enough we get

0.55224(1− p)

8.48521 + 0.765(1− p) + (1− p)/m
>

0.55224(1− p)

8.81416
>

1− p

16
.

8We do not compute the value of γ exactly as it is too difficult to do parametrically.
9When applying Proposition 5.3.8, we set δ = δin.

84

Case 0 < p ≤ 0.57: The parameters we choose for this regime are

M1 = 5.59,M2 = 20.21, β1 = 0.53,MB = 10−5, δout = 2−20 and δin = 0.006147 ,

and set T = 13. Using Proposition 5.3.8, we get that Rin = 0.577475. As in the previous case, the upper
bounds to P (1)→(0), P (2)→(1), P (2)→(0) were obtained by using Equations (5.6), (5.8) and (5.11), this time
with p = 0.57 (observe that M2/(1− 0.57) is an integer). In this case 13 = T ≥ ⌈M1/(1− p)⌉. For a random
variable Z distributed as Z ∼ Bin (⌈M1/(1− p)⌉ , 1− p), it holds that

P (1)→(2) = Pr[Z ≥ T + 1] = 0

since bits can only be deleted by the BDCp.
One can simply verify that γ̃ < δin and hence for a small enough εout our decoding algorithm succeeds

with high probability by Proposition 5.5.1. Plugging the parameters into Equation (5.1) and letting m be
large enough we get that for the case p ≤ 0.57, the rate of the construction is

0.57747(1− p)

7.71206 + 0.765(1− p) + (1− p)/m
>

0.57747(1− p)

8.47706
>

1− p

16
.

This completes the proof of Theorem 5.1.1

5.6 Rates For Fixed Values of Deletion Probabilities

In Theorem 5.1.1 we constructed codes of rate larger than (1− p)/16 for the BDCp that can be used for reli-
able communication. Note that even if p → 1 our construction gives codes of positive rate. Now, we wish to
fix p (and thus leave the regime p → 1) and instead of using the bounds given in Equations (5.5), (5.7), (5.9)
and (5.12), we can use the exact direct calculations given in Equations (5.4), (5.6), (5.8) and (5.11), respec-
tively. Using the exact bounds we can improve, for any fixed value of p, the rate of the code compared to
what we obtained in Theorem 5.1.1. The reason that we can improve the bound is that in the proof of Theo-
rem 5.1.1 we looked for a relatively simple argument that should work for every value of p. When p is fixed,
we can use more direct calculations to get a better bound. For example, we can get significant improvement
by using Equation (5.6) instead of Equation (5.7). E.g., for p = 0.8 there is a relatively large difference
between pM1/(1−p) and e−M1 . E.g., for M1 = 5 we have that e−5 = 0.00673 and 0.85/(0.2) = 0.00377. Such
savings allow us to choose smaller value of M1 for the case p = 0.8. Then, by reducing the value of M1 we
reduce also the values of T and M2 which eventually lead to an improved rate.

The reason that we do not optimize the calculation using these equations for every p is that the opti-
mization involves complex expressions involving all our parameters and it is not clear how to optimize it and
get a closed formula for the rate for arbitrary p.

In [DM07], the authors gave constructions of probabilistic codes for the binary deletion channel. They
derived lower bounds on the capacity of the BDCp that are the best lower bounds as far as we know for
fixed values of p.

In Table 5.1 we compare our results to the ones obtained in [DM07]. One can see that our rates are
smaller by approximately a factor of 2. Yet, the construction presented in this chapter is deterministic, has
polynomial time complexity and has a simpler analysis.

Note that as p tends to 1 the rate that we achieve approaches (1− p)/15.7 as can be seen in Figure 5.3.

Remark 5.6.1. The calculations in Table 5.1 are done only for p ≥ 0.5 as the focus of this chapter is on
large values of p. When p is small we know that the rate is better than (1 − p)/9 (it approaches 1 − h(p))
and one has to take a different approach in order to obtain good constructions.

Remark 5.6.2. As noted in the introduction of this chapter, the work by Rubinstein [Rub22] improves upon
this result by showing how one can convert any code (even non explicit) for the BDC into an explicit and
efficient code for the BDC with a negligible lost to the rate. Rubinstein achieves this assuming no structure
on the inner code (note that the structure of our inner code clearly affects the final rate of our construction).

85

p (β1, N1, T,N2,Rin, δin) Final rate [DM07]
0.50 (0.497, 8, 7, 27, 0.5456, 0.00922) 0.050682 0.10186
0.55 (0.519, 9, 8, 34, 0.5525, 0.00825) 0.043005 0.084323
0.60 (0.508, 10, 8, 38, 0.5184, 0.01120) 0.035935 0.069564
0.65 (0.519, 13, 9, 49, 0.5545, 0.00810) 0.029926 0.056858
0.70 (0.509, 15, 9, 57, 0.5267, 0.01051) 0.024353 0.045324
0.75 (0.524, 20, 10, 75, 0.5400, 0.00910) 0.019420 0.035984
0.80 (0.514, 24, 10, 96, 0.5289, 0.01022) 0.014830 0.027266
0.85 (0.526, 34, 11, 138, 0.5413, 0.00895) 0.010701 0.019380
0.90 (0.537, 54, 12, 224, 0.5534, 0.00773) 0.006845 0.012378
0.95 (0.53, 108, 12, 452, 0.5402, 0.00893) 0.003305 0.005741
0.99 (0.52, 541, 12, 2280, 0.5318, 0.00985) 0.000641 -

Table 5.1: Rates for fixed values of p. N1 and N2 are the lengths of the inner codeword runs after the
blow-up. I.e., N1 = ⌈M1/(1− p)⌉ and N2 = ⌈M2/(1− p)⌉.

0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

p

R
a
te

(1− p)/15.71
Rates for fixed p

Figure 5.3: Rates for fixed values of p.

Removing this structure, he needed to design clever buffers (as opposed to our large chucks of zeros) and
instead of classical code concatenations, he uses a recursive construction with a careful and tight analysis. In
[PLW22], Pernice et al. improved this result and showed that it holds for any “general repeat channel” which
is a broad family of synchronization channels that capture also the BDC and the Poisson repeat channel.

5.7 Poisson Repeat Channel

We first recall the definition of the PRCλ.

Definition 5.7.1. Let λ > 0. The Poisson repeat channel with parameter λ (PRCλ) replaces each trans-
mitted bit randomly (and independently of other transmitted bits), with a discrete number of copies of that
bit, distributed according to the Poisson distribution with parameter λ.

This channel was first defined by Mitzenmacher and Drinea in [MD06] who used it to prove a lower bound
of (1− p) /9 on the rate of the BDC. More recently, Cheraghchi [Che18] gave an upper bound on its capacity
and showed further connections to the BDC.

86

Before proceeding, let us describe the connection between the PRC and the BDC discovered by Mitzen-
macher and Drinea. What they observed is that a code for the PRCλ having rate R, yields a code for the
BDCp of rate (1− p) · R/λ. The reduction is via a probabilistic argument – from each codeword in the code
for the PRCλ we generate a codeword for the BDCp as follows: we replace each of the bits in the codeword
by a discrete number of copies of those bits, distributed according to the Poisson distribution with parameter
λ/(1 − p). The intuition for the construction is that now, when we send the codeword through the BDCp,
the resulting word is distributed as if we had sent the original codeword through the PRCλ.

To the best of our knowledge, prior to this work there were no explicit deterministic constructions of
coding schemes for the PRCλ. In this section, we prove that the scheme that we constructed for the BDC
can also be used for PRC (with slightly different parameters). We note that one can also use the construction
given in [GL18] to obtain a deterministic construction for the PRC, yet our construction yields better rates
in this case as well.

We focus on the regime where λ ≤ 0.5, as, in some sense, the PRC behaves like the BDC for small values
of λ – intuitively, the smaller λ is the more likely deletions are.

We now describe the construction for this channel. Note that most of the details are identical to our
construction for the BDCp. Therefore, in order not to repeat the entire proof, we focus on the differences
and leave the details to the reader.

5.7.1 Construction

We use the same inner and outer codes defined in Proposition 5.3.8 and Theorem 5.2.11. For parameters
M1 < M2 and MB our construction is as follows:

Encoding. The only differences in the encoding procedure are the length of the buffers and the blow-up
of the runs:

• We place a buffer of 0’s between every two inner codewords, where the buffers length is ⌈MBm/λ⌉.

• Every run of length 1 is replaced with a run of length ⌈M1/λ⌉.

• Every run of length 2 is replaced with a run of length ⌈M2/λ⌉.

Remark 5.7.2. We must choose M2 > λ since otherwise all runs in the inner code will be replaced with a
run of length 1.

Decoding. Since the inner and outer codes are the same we use the decoding algorithm given in Algorithm 5.

Rate. Similar to the calculations yielding Equation (5.1), the rate of this construction is

R =
log
(
|Σ|Routn

)
β1 ⌈M1/λ⌉nm+ β2 ⌈M2/λ⌉nm+ ⌈MBm/λ⌉ (n− 1)

≥ RinRout

β1 ⌈M1/λ⌉+ β2 ⌈M2/λ⌉+MB/λ+ 1/m
(5.17)

≥ RoutRin · λ
β1M1 + β2M2 + βλ+MB + λ/m

.

As before, we can avoid the ceilings if we consider values of λ such that ⌈M1/λ⌉, ⌈M2/λ⌉ and ⌈MBm/λ⌉ are
integers. In this case, the rate of the construction is given by

R ≥ RinRout · λ
β1M1 + β2M2 +MB

. (5.18)

87

5.7.2 Correctness of Decoding Algorithm

Since we use the same inner and outer codes in our encoding and the same decoding algorithm, the analysis
performed in Section 5.5 can be repeated to this case as well with some minor modifications. We will briefly
mention these modifications and leave the proofs to the reader.

We start by formally stating an analogous version of Proposition 5.5.1 to this setting.

Proposition 5.7.3. Given M1, T,M2,MB , β1, δin, εin, δout (as described in Section 5.7.1) let Z1 ∼
Poisson(λ ⌈M1/λ⌉) and Z2 ∼ Poisson(λ ⌈M2/λ⌉). Denote

P (1)→(2) := Pr[Z1 ≥ T + 1] ,

P (1)→(0) := Pr[Z1 = 0] ,

P (2)→(1) := Pr[Z2 ≤ T] ,

P (2)→(0) := Pr[Z2 = 0] ,

and define
γ := β1 · P (1)→(2) + β2 · P (2)→(1) + (2β1 + β2)P

(1)→(0) + 4β2P
(2)→(0) . (5.19)

Let x ∈ ΣRoutn be a message and let y be the string obtained after encoding x using our code and transmitting
it through the PRCλ. If γ < δin, then there exists ϵ0 = ϵ0(M1, T,M2,MB , β1, δin, δout) such that for every
εout < ϵ0 it holds that Algorithm 5 returns x with probability 1− exp (−Ω(n)).

Note that the only difference between this proposition and Proposition 5.5.1 is in the definitions of Z1 and
Z2. Recall that the proof of Proposition 5.5.1 heavily relies on Propositions 5.5.2, 5.5.3, and 5.5.5. Therefore,
to prove Proposition 5.7.3, one needs to formally state and prove analogous versions of Propositions 5.5.2,
5.5.3, and 5.5.5 in the setting of the PRC.

We first observe that it is very simple to prove the analogous claims to Propositions 5.5.2 and 5.5.3 by
using Lemma 5.2.8 instead of Lemma 5.2.7 (since our random variables are now distributed according to
the Poisson distribution). Hence we omit the details. We thus have that the probability of each error type
is exp(−Ω(m)) per inner codeword. We focus on analyzing the case where we might output a wrong inner
codeword in Step 3 of Algorithm 5 (i.e. the case analyzed in Proposition 5.5.5).

Wrong Inner Decoding

Note that as we consider the same threshold decoding step for decoding the inner windows (i.e., Step 2 in
Algorithm 5) and the same inner code, the claims of Section 5.5.1 apply here as well. The difference from
Section 5.5.1 is in the computations of the probabilities P (1)→(2) , P (1)→(0), P (2)→(1), P (2)→(0). We focus
on these computations as they play a significant role in computing the rate in Theorem 5.1.2.

Recall that in the encoding process, a run rj is replaced with a run of length ⌈M1/λ⌉ or ⌈M2/λ⌉ depending
on rj ’s length. As in Section 5.5.1, define Zj to be the random variable corresponding to the number of
bits from this blown-up run that survived the transmission through the PRCλ. According to Lemma 5.2.3,
Zj ∼ Poisson(λ ⌈M1/λ⌉) if |rj | = 1 and Zj ∼ Poisson(λ ⌈M2/λ⌉) if |rj | = 2. Let r′j be exactly as defined in
Definition 5.5.8. As before, we study the probability that rj ̸= r′j :

1. If |rj | = 1 then there are two possible types of errors:

(a)
∣∣r′j∣∣ = 2: The probability for this to happen is P (1)→(2) := Pr[Zj ≥ T + 1]. We next give two
estimates, one is an exact calculation and the other is an upper bound. For every λ we have

P (1)→(2) = Pr[Zj ≥ T + 1]

= 1− Pr[Zj ≤ T]

= 1− e−λ⌈M1
λ ⌉

T∑
i=0

(λ
⌈
M1

λ

⌉
)i

i!
.

(5.20)

88

Let Y be a random variable distributed as Y ∼ Poisson(M1 + λ). We can upper bound P (1)→(2)

by

P (1)→(2) = Pr[Zj ≥ T + 1] = 1− Pr[Zj ≤ T]

≤ 1− Pr[Y ≤ T]

= 1− e−M1−λ
T∑

i=0

(M1 + λ)i

i!
.

(5.21)

where the inequality follows from Lemma 5.2.4 by noting that λ ⌈M1/λ⌉ ≤ M1 + λ.

(b)
∣∣r′j∣∣ = 0: In this case, rj was completely deleted by the channel. The probability for this to
happen is

P (1)→(0) = Pr[Zj = 0] = e−λ⌈M1/λ⌉ ≤ e−M1 . (5.22)

2. If |rj | = 2 then one of the following cases hold:

•
∣∣r′j∣∣ = 1: The probability for this to happen is P (2)→(1) := Pr[Zj ≤ T]. As before, the exact
probability calculation is

P (2)→(1) = Pr[Zj ≤ T] = e−λ⌈M2
λ ⌉

T∑
i=0

(λ
⌈
M2

λ

⌉
)i

i!
. (5.23)

Let Y be a random variable distributed as Y ∼ Poisson(M2) then it holds that

P (2)→(1) = Pr[Zj ≤ T] ≤ Pr[Y ≤ T] = e−M2

T∑
i=0

M i
2

i!
, (5.24)

where the inequality follows from Lemma 5.2.4 by noting that M2 ≤ λ ⌈M2/λ⌉.
•
∣∣r′j∣∣ = 0. The probability for this to happen is

P (2)→(0) = Pr[Zj = 0] = e−λ⌈M2/λ⌉ ≤ e−M2 . (5.25)

By using these estimates and proceeding exactly as in the proof of Proposition 5.5.5 one gets that
the probability of error in this case as well is exp (−Ω(m)). Combining everything together the proof of
Proposition 5.7.3 follows similarly to the proof of Proportion 5.5.1 . In particular, Algorithm 5 decodes
correctly in this setting as well.

Proof of Theorem 5.1.2

As in the proof of Theorem 5.1.1, we first compute an upper bound on γ (recall its definition in Proposi-
tion 5.7.3) that holds for all λ ≤ 0.5, then we compute the rate of the inner code by using Proposition 5.3.8
and finally we compute the rate of our code using Equation 5.17.

The parameters we use for our construction are

M1 = 5.49,M2 = 24.2, β1 = 0.532,MB = 10−5 and δout = 2−20 .

We pick T = 13 and set δin = 0.00954.
First observe that for every λ > 0, we can upper bound P (1)→(0), P (2)→(1), P (2)→(0) using Equations

(5.22), (5.24), and (5.25) respectively. As we assume λ ≤ 0.5, we can upper bound P (1)→(2) using Equation
(5.21) with λ = 0.5 (due to monotonicity implied by Lemma 5.2.4). Plugging these upper bounds to
Equation (5.19), we get an upper bound on γ which, as before, we denote by γ̃. Calculating, it is simple
to verify that γ ≤ γ̃ < δin. Therefore, for a small enough εout, our decoding algorithm succeeds with high
probability. Applying Proposition 5.3.8 we get an inner code of rate Rin = 0.53186 and by letting m be
large enough, the rate of our concatenated code according to Equation (5.17) is

R =
0.5318λ

8.58349 + 0.766λ+ λ/m
>

λ

17
.

89

Bibliography

[AG19] Omar Alrabiah and Venkatesan Guruswami. An exponential lower bound on the sub-
packetization of MSR codes. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, pages 979–985, 2019.

[AGFC07] Khaled AS Abdel-Ghaffar, Hendrik C Ferreira, and Ling Cheng. On linear and cyclic codes
for correcting deletions. In 2007 IEEE International Symposium on Information Theory, pages
851–855. IEEE, 2007.

[AS65] Theodore W Anderson and Stephen M Samuels. Some inequalities among binomial and poisson
probabilities. In Proc. Fifth Berkeley Symp. Math. Statist. Probab, volume 1, pages 1–12, 1965.

[BBD+22] Amit Berman, Sarit Buzaglo, Avner Dor, Yaron Shany, and Itzhak Tamo. Repairing reed–
solomon codes evaluated on subspaces. IEEE Transactions on Information Theory, 2022.

[BDIR18] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin. On the local leakage
resilience of linear secret sharing schemes. In Annual International Cryptology Conference,
pages 531–561. Springer, 2018.

[BGZ17] Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. Efficient low-redundancy
codes for correcting multiple deletions. IEEE Transactions on Information Theory, 64(5):3403–
3410, 2017.

[BLC+16] James Bornholt, Randolph Lopez, Douglas M Carmean, Luis Ceze, Georg Seelig, and Karin
Strauss. A DNA-based archival storage system. ACM SIGARCH Computer Architecture News,
44(2):637–649, 2016.

[BLOS+21] Daniella Bar-Lev, Itai Orr, Omer Sabary, Tuvi Etzion, and Eitan Yaakobi. Deep dna stor-
age: Scalable and robust dna storage via coding theory and deep learning. arXiv preprint
arXiv:2109.00031, 2021.

[BSZ17] Christine Bachoc, Oriol Serra, and Gilles Zémor. An analogue of Vosper’s theorem for extension
fields. Mathematical Proceedings of the Cambridge Philosophical Society, 163(3):423–452, 2017.

[Cau12] Augustin Louis Baron Cauchy. Recherches sur les nombres. 1812.

[CCS+18] Douglas Carmean, Luis Ceze, Georg Seelig, Kendall Stewart, Karin Strauss, and Max Willsey.
Dna data storage and hybrid molecular–electronic computing. Proceedings of the IEEE,
107(1):63–72, 2018.

[CGHL21] Kuan Cheng, Venkatesan Guruswami, Bernhard Haeupler, and Xin Li. Efficient linear and
affine codes for correcting insertions/deletions. In Dániel Marx, editor, Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10
- 13, 2021, pages 1–20. SIAM, 2021.

[Che18] Mahdi Cheraghchi. Capacity upper bounds for deletion-type channels. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, pages 493–506. ACM, 2018.

90

[CHL+19] Kuan Cheng, Bernhard Haeupler, Xin Li, Amirbehshad Shahrasbi, and Ke Wu. Synchronization
strings: Highly efficient deterministic constructions over small alphabets. In Timothy M. Chan,
editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2185–2204. SIAM, 2019.

[CJLW18] Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Deterministic document exchange protocols,
and almost optimal binary codes for edit errors. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pages 200–211. IEEE, 2018.

[CR03] Maxime Crochemore and Wojciech Rytter. Jewels of stringology: text algorithms. World Sci-
entific, 2003.

[CR20] Mahdi Cheraghchi and João Ribeiro. An overview of capacity results for synchronization chan-
nels. IEEE Transactions on Information Theory, 67(6):3207–3232, 2020.

[CS22] Roni Con and Amir Shpilka. Improved constructions of coding schemes for the binary deletion
channel and the poisson repeat channel. IEEE Trans. Inf. Theory, 68(5):2920–2940, 2022.

[CST22] Roni Con, Amir Shpilka, and Itzhak Tamo. Explicit and efficient constructions of linear
codes against adversarial insertions and deletions. IEEE Transactions on Information The-
ory, 68(10):6516–6526, 2022.

[CST23] Roni Con, Amir Shpilka, and Itzhak Tamo. Reed–solomon codes against adversarial insertions
and deletions. IEEE Transactions on Information Theory, 2023.

[CT22] Roni Con and Itzhak Tamo. Nonlinear repair of reed-solomon codes. IEEE Transactions on
Information Theory, 68(8):5165–5177, 2022.

[CZ21] Bocong Chen and Guanghui Zhang. Improved Singleton bound on insertion-deletion codes and
optimal constructions. arXiv preprint arXiv:2105.02004, 2021.

[Dal11] Marco Dalai. A new bound on the capacity of the binary deletion channel with high deletion
probabilities. In Information Theory Proceedings (ISIT), 2011 IEEE International Symposium
on, pages 499–502. IEEE, 2011.

[Dav35] Harold Davenport. On the addition of residue classes. Journal of the London Mathematical
Society, 1(1):30–32, 1935.

[DD08] Danyo Danev and Stefan Dodunekov. A family of ternary quasi-perfect BCH codes. Designs,
Codes and Cryptography, 49(1-3):265–271, 2008.

[DDKM18] Hoang Dau, Iwan M Duursma, Han Mao Kiah, and Olgica Milenkovic. Repairing Reed-Solomon
codes with multiple erasures. IEEE Transactions on Information Theory, 64(10):6567–6582,
2018.

[DGW+10] Alexandros G Dimakis, P Brighten Godfrey, Yunnan Wu, Martin J Wainwright, and Kannan
Ramchandran. Network coding for distributed storage systems. IEEE transactions on infor-
mation theory, 56(9):4539–4551, 2010.

[DL78] Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic program testing.
Inf. Process. Lett., 7(4):193–195, 1978.

[DLTX19] Tai Do Duc, Shu Liu, Ivan Tjuawinata, and Chaoping Xing. Explicit Constructions of Two-
Dimensional Reed-Solomon Codes in High Insertion and Deletion Noise Regime. arXiv preprint
arXiv:1909.03426, 2019.

[DM07] Eleni Drinea and Michael Mitzenmacher. Improved lower bounds for the capacity of iid deletion
and duplication channels. IEEE Transactions on Information Theory, 53(8):2693–2714, 2007.

91

[EL73] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. In Colloquia Mathematica Societatis Janos Bolyai 10. Infinite and Finite
Sets, Keszthely (Hungary). Citeseer, 1973.

[Eli55] Peter Elias. Coding for noisy channels. IRE Convention Record, 4:37–46, 1955.

[ERR10] Salim El Rouayheb and Kannan Ramchandran. Fractional repetition codes for repair in dis-
tributed storage systems. In 2010 48th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 1510–1517. IEEE, 2010.

[ET41] Paul Erdös and Pál Turán. On a problem of Sidon in additive number theory, and on some
related problems. Journal of the London Mathematical Society, 1(4):212–215, 1941.

[FD10] Dario Fertonani and Tolga M Duman. Novel bounds on the capacity of the binary deletion
channel. IEEE Transactions on Information Theory, 56(6):2753–2765, 2010.

[GERCP13] Sreechakra Goparaju, Salim El Rouayheb, Robert Calderbank, and H Vincent Poor. Data
secrecy in distributed storage systems under exact repair. In 2013 International Symposium on
Network Coding (NetCod), pages 1–6. IEEE, 2013.

[GFV17] Sreechakra Goparaju, Arman Fazeli, and Alexander Vardy. Minimum storage regenerating
codes for all parameters. IEEE Transactions on Information Theory, 63(10):6318–6328, 2017.

[GH21] Venkatesan Guruswami and Johan H̊astad. Explicit two-deletion codes with redundancy match-
ing the existential bound. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 21–32. SIAM, 2021.

[GK] Venkatesan Guruswami and Cheng Kuan. personal communication.

[GL18] Venkatesan Guruswami and Ray Li. Polynomial time decodable codes for the binary deletion
channel. IEEE Transactions on Information Theory, 2018.

[GRS12] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding theory. Draft available
at http://www. cse. buffalo. edu/ atri/courses/coding-theory/book, 2012.

[GS86] Igor Borisovich Gashkov and Vladimir Michilovich Sidel’nikov. Linear ternary quasi-perfect
codes correcting double errors. Problemy Peredachi Informatsii, 22(4):43–48, 1986.

[GS95] Arnaldo Garcia and Henning Stichtenoth. A tower of artin-schreier extensions of function fields
attaining the drinfeld-vladut bound. Inventiones mathematicae, 121(1):211–222, 1995.

[GS96] Arnaldo Garcia and Henning Stichtenoth. On the asymptotic behaviour of some towers of
function fields over finite fields. Journal of number theory, 61(2):248–273, 1996.

[GW17a] Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-rate regimes.
IEEE Transactions on Information Theory, 63(4):1961–1970, 2017.

[GW17b] Venkatesan Guruswami and Mary Wootters. Repairing Reed-Solomon codes. IEEE transactions
on Information Theory, 63(9):5684–5698, 2017.

[Hae19] Bernhard Haeupler. Optimal document exchange and new codes for insertions and deletions.
In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages
334–347. IEEE, 2019.

[Ham50] Richard W. Hamming. Error detecting and error correcting codes. Bell System technical journal,
29(2):147–160, 1950.

[HMG19] Reinhard Heckel, Gediminas Mikutis, and Robert N Grass. A characterization of the DNA data
storage channel. Scientific reports, 9(1):1–12, 2019.

92

[Hoe94] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. In The
Collected Works of Wassily Hoeffding, pages 409–426. Springer, 1994.

[HS17] Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: codes for inser-
tions and deletions approaching the Singleton bound. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 33–46. ACM, 2017.

[HS21] Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings and codes for inser-
tions and deletions - A survey. IEEE Trans. Inf. Theory, 67(6):3190–3206, 2021.

[HSRD17] Reinhard Heckel, Ilan Shomorony, Kannan Ramchandran, and NC David. Fundamental limits
of dna storage systems. In 2017 IEEE International Symposium on Information Theory (ISIT),
pages 3130–3134. IEEE, 2017.

[KMS10] Adam Kalai, Michael Mitzenmacher, and Madhu Sudan. Tight asymptotic bounds for the
deletion channel with small deletion probabilities. In Information Theory Proceedings (ISIT),
2010 IEEE International Symposium on, pages 997–1001. IEEE, 2010.

[Kot96] Ralf Kotter. Fast generalized minimum-distance decoding of algebraic-geometry and Reed-
Solomon codes. IEEE Transactions on Information Theory, 42(3):721–737, 1996.

[Lev66] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, pages 707–710, 1966.

[LSWZY19] Andreas Lenz, Paul H Siegel, Antonia Wachter-Zeh, and Eitan Yaakobi. Coding over sets for
dna storage. IEEE Transactions on Information Theory, 66(4):2331–2351, 2019.

[LT21] Shu Liu and Ivan Tjuawinata. On 2-dimensional insertion-deletion Reed-Solomon codes with
optimal asymptotic error-correcting capability. Finite Fields and Their Applications, 73:101841,
2021.

[LWJ19] Weiqi Li, Zhiying Wang, and Hamid Jafarkhani. On the sub-packetization size and the repair
bandwidth of Reed-Solomon codes. IEEE Transactions on Information Theory, 65(9):5484–
5502, 2019.

[LX21] Shu Liu and Chaoping Xing. Bounds and constructions for insertion and deletion codes. arXiv
preprint arXiv:2111.14026, 2021.

[Mas84] Richard C. Mason. Diophantine Equations over Function Fields. London Mathematical Society
Lecture Note Series. Cambridge University Press, 1984.

[Mas85] David W. Masser. Open problems. In Chen, W.W.L. (ed.). Proceedings of the Symposium on
Analytic Number Theory. Imperial College, London, 1985.

[MBT10] Hugues Mercier, Vijay K Bhargava, and Vahid Tarokh. A survey of error-correcting codes
for channels with symbol synchronization errors. IEEE Communications Surveys & Tutorials,
12(1):87–96, 2010.

[MBW18] Jay Mardia, Burak Bartan, and Mary Wootters. Repairing multiple failures for scalar MDS
codes. IEEE Transactions on Information Theory, 65(5):2661–2672, 2018.

[MD06] Michael Mitzenmacher and Eleni Drinea. A simple lower bound for the capacity of the deletion
channel. IEEE Transactions on Information Theory, 52(10):4657–4660, 2006.

[Mit09] Michael Mitzenmacher. A survey of results for deletion channels and related synchronization
channels. Probability Surveys, 6:1–33, 2009.

93

[MS81] Robert J. McEliece and Dilip V. Sarwate. On sharing secrets and Reed-Solomon codes. Com-
munications of the ACM, 24(9):583–584, 1981.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized algorithms and
probabilistic analysis. Cambridge university press, 2005.

[Oes88] Joseph Oesterlé. Nouvelles approches du “théoreme” de Fermat. Astérisque, 161(162):165–186,
1988.

[PDC13] Dimitris S Papailiopoulos, Alexandros G Dimakis, and Viveck R Cadambe. Repair optimal era-
sure codes through Hadamard designs. IEEE Transactions on Information Theory, 59(5):3021–
3037, 2013.

[PLW22] Francisco Pernice, Ray Li, and Mary Wootters. Efficient capacity-achieving codes for general
repeat channels. In 2022 IEEE International Symposium on Information Theory (ISIT), pages
3097–3102. IEEE, 2022.

[RD14] Mojtaba Rahmati and Tolga M Duman. Upper bounds on the capacity of deletion channels
using channel fragmentation. IEEE Transactions on Information Theory, 61(1):146–156, 2014.

[RLT21] Netanel Raviv, Ben Langton, and Itzhak Tamo. Multivariate Public Key Cryptosystem from
Sidon Spaces. In Juan A. Garay, editor, Public-Key Cryptography - PKC 2021 - 24th IACR
International Conference on Practice and Theory of Public Key Cryptography, Virtual Event,
May 10-13, 2021, Proceedings, Part I, volume 12710 of Lecture Notes in Computer Science,
pages 242–265. Springer, 2021.

[RRT17] Ron M. Roth, Netanel Raviv, and Itzhak Tamo. Construction of Sidon spaces with applications
to coding. IEEE Transactions on Information Theory, 64(6):4412–4422, 2017.

[RSE17] Netanel Raviv, Natalia Silberstein, and Tuvi Etzion. Constructions of high-rate minimum stor-
age regenerating codes over small fields. IEEE Transactions on Information Theory, 63(4):2015–
2038, 2017.

[RSG+14] KV Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and Kannan
Ramchandran. A” hitchhiker’s” guide to fast and efficient data reconstruction in erasure-coded
data centers. In Proceedings of the 2014 ACM conference on SIGCOMM, pages 331–342, 2014.

[RSK11] Korlakai Vinayak Rashmi, Nihar B Shah, and P Vijay Kumar. Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-matrix construction.
IEEE Transactions on Information Theory, 57(8):5227–5239, 2011.

[RSRK12] KV Rashmi, Nihar B Shah, Kannan Ramchandran, and P Vijay Kumar. Regenerating codes
for errors and erasures in distributed storage. In 2012 IEEE International Symposium on
Information Theory Proceedings, pages 1202–1206. IEEE, 2012.

[Rub22] Ittai Rubinstein. Explicit and efficient construction of nearly optimal rate codes for the binary
deletion channel and the poisson repeat channel. In Mikolaj Bojanczyk, Emanuela Merelli,
and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and
Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 105:1–
105:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[SAK+01] Kenneth W Shum, Ilia Aleshnikov, P Vijay Kumar, Henning Stichtenoth, and Vinay Deolalikar.
A low-complexity algorithm for the construction of algebraic-geometric codes better than the
gilbert-varshamov bound. IEEE Transactions on Information Theory, 47(6):2225–2241, 2001.

[SAP+13] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris S. Papailiopoulos, Alexandros G.
Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur. Xoring elephants: Novel
erasure codes for big data. Proc. VLDB Endow., 6(5):325–336, 2013.

94

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, 1980.

[SH+22] Ilan Shomorony, Reinhard Heckel, et al. Information-theoretic foundations of dna data storage.
Foundations and Trends® in Communications and Information Theory, 19(1):1–106, 2022.

[Sha48] Claude Elwood Shannon. A mathematical theory of communication. Bell system technical
journal, 27(3):379–423, 1948.

[SNW02] Reihaneh Safavi-Naini and Yejing Wang. Traitor tracing for shortened and corrupted finger-
prints. In ACM workshop on Digital Rights Management, pages 81–100. Springer, 2002.

[Soo08] Tan Jin Soon. QR code. Synthesis Journal, 2008:59–78, 2008.

[SPDC14] Karthikeyan Shanmugam, Dimitris S Papailiopoulos, Alexandros G Dimakis, and Giuseppe
Caire. A repair framework for scalar MDS codes. IEEE Journal on Selected Areas in Commu-
nications, 32(5):998–1007, 2014.

[SRV15] Natalia Silberstein, Ankit Singh Rawat, and Sriram Vishwanath. Error-correcting regenerating
and locally repairable codes via rank-metric codes. IEEE Transactions on Information Theory,
61(11):5765–5778, 2015.

[Sti09] Henning Stichtenoth. Algebraic function fields and codes, volume 254. Springer Science &
Business Media, 2009.

[Sto81] Walter W. Stothers. Polynomial identities and Hauptmoduln. The Quarterly Journal of Math-
ematics, 32(3):349–370, 1981.

[SV90] Alexei N Skorobogatov and Serge G Vladut. On the decoding of algebraic-geometric codes.
IEEE Transactions on Information Theory, 36(5):1051–1060, 1990.

[TPFV21] Ido Tal, Henry D Pfister, Arman Fazeli, and Alexander Vardy. Polar codes for the deletion
channel: Weak and strong polarization. IEEE Transactions on Information Theory, 68(4):2239–
2265, 2021.

[TSN07] Dongvu Tonien and Reihaneh Safavi-Naini. Construction of deletion correcting codes using gen-
eralized Reed–Solomon codes and their subcodes. Designs, Codes and Cryptography, 42(2):227–
237, 2007.

[Tuc94] Alan Tucker. Applied combinatorics. John Wiley & Sons, Inc., 1994.

[TVZ82] Michael A Tsfasman, Serge Vlădutx, and Thomas Zink. Modular curves, Shimura curves, and
Goppa codes, better than Varshamov-Gilbert bound. Mathematische Nachrichten, 109(1):21–
28, 1982.

[TWB12] Itzhak Tamo, Zhiying Wang, and Jehoshua Bruck. Zigzag codes: MDS array codes with optimal
rebuilding. IEEE Transactions on Information Theory, 59(3):1597–1616, 2012.

[TYB17] Itzhak Tamo, Min Ye, and Alexander Barg. Optimal repair of Reed-Solomon codes: Achieving
the cut-set bound. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 216–227. IEEE, 2017.

[Vos56] Alan Gordon Vosper. The critical pairs of subsets of a group of prime order. Journal of the
London Mathematical Society, 1(2):200–205, 1956.

[VW03] Leonid N Vaserstein and Ethel R Wheland. Vanishing polynomial sums. Communications in
Algebra, 31(2):751–772, 2003.

95

[WB99] Stephen B Wicker and Vijay K Bhargava. Reed-Solomon codes and their applications. John
Wiley & Sons, 1999.

[WMSN04] Yejing Wang, Luke McAven, and Reihaneh Safavi-Naini. Deletion correcting using generalized
Reed-Solomon codes. In Coding, Cryptography and Combinatorics, pages 345–358. Springer,
2004.

[WTB16] Zhiying Wang, Itzhak Tamo, and Jehoshua Bruck. Explicit minimum storage regenerating
codes. IEEE Transactions on Information Theory, 62(8):4466–4480, 2016.

[YB17a] Min Ye and Alexander Barg. Explicit constructions of high-rate MDS array codes with optimal
repair bandwidth. IEEE Transactions on Information Theory, 63(4):2001–2014, 2017.

[YB17b] Min Ye and Alexander Barg. Explicit constructions of optimal-access MDS codes with nearly
optimal sub-packetization. IEEE Transactions on Information Theory, 63(10):6307–6317, 2017.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, pages 216–226,
1979.

96

	Abstract
	Acknowledgements
	Introduction
	Nonlinear Repair of Reed–Solomon Codes
	Introduction
	Coding for distributed storage systems
	The setup
	Repair of RS codes
	Linear and nonlinear repair schemes
	Our contribution
	Organization of this chapter

	A General framework for node repair
	Asymptotically MSR RS codes over Fp
	Existence of asymptotically [n,2,d] MSR RS codes over Fp
	Outperforming linear repair schemes over field extensions

	Explicit constructions of RS codes
	A toy example
	An RS code construction with k < d n/2
	Repairing by any d helper nodes

	An improved lower bound on the bandwidth
	Concluding remarks and open problems
	Appendix
	Proof of lem:lcm-lemma
	Repairing i for i{1,2,3}

	Linear codes correcting insertions and deletions
	Introduction
	Insertion and Deletions
	Linear codes
	Basic definitions and notation
	Previous results
	Our results
	Proof idea
	Organization of the chapter

	Linear Insdel Codes over Finite Alphabet via Synchronization Strings
	Half-linear insdel codes
	Full linear insdel codes

	Binary Linear Codes
	The inner code
	Construction of our code
	Analysis
	Proof of thm:bin-linear

	Open questions

	Reed–Solomon codes correcting insertions and deletions
	Introduction
	Previous results
	Our results
	Proof idea
	Organization

	Optimal Reed-Solomon codes exist
	An algebraic condition
	Existence using Schwarz-Zippel-DeMillo-Lipton lemma
	Existence using the Lovász-local-lemma

	Deterministic construction for any k
	Explicit construction for k=2 with quartic field size
	A lower bound on the field size

	Summary and open questions

	Constructions of coding schemes for the binary deletion channel and the Poisson repeated channel
	Introduction
	Lower bounds on the capacity of the BDC
	Upper bounds on the capacity of the BDC
	Efficient constructions for the BDC
	The Poisson repeat channel
	Our Results
	Construction and Proof Overview
	Organization

	Preliminaries
	Facts from Probability
	The Code of Haeupler and Shahrasbi haeupler2017synchronization

	The Inner Code
	Construction
	Correctness and Analysis
	Correctness of Decoding Algorithm
	Proof of Theorem 5.1.1

	Rates For Fixed Values of Deletion Probabilities
	Poisson Repeat Channel
	Construction
	Correctness of Decoding Algorithm

