
Oblivious Deletion Codes

Roni Con∗ , Ray Li†

June 24, 2025

Abstract

We construct deletion error-correcting codes in the oblivious model, where errors are
adversarial but oblivious to the encoder’s randomness. Oblivious errors bridge the gap
between the adversarial and random error models, and are motivated by applications
like DNA storage, where the noise is caused by hard-to-model physical phenomena,
but not by an adversary.

• (Explicit oblivious) We construct t oblivious deletion codes, with redundancy
∼ 2t log n, matching the existential bound for adversarial deletions.

• (List decoding implies explicit oblivious) We show that explicit list-decodable
codes yield explicit oblivious deletion codes with essentially the same parameters.
By a work of Guruswami and H̊astad (IEEE TIT, 2021), this gives 2 oblivious
deletion codes with redundancy ∼ 3 log n, beating the existential redundancy for
2 adversarial deletions.

• (Randomized oblivious) We give a randomized construction of oblivious codes
that, with probability at least 1−2−n, produces an efficiently encodable/decodable
code correcting t oblivious deletions with redundancy ∼ (t+1) log n, beating the
existential adversarial redundancy of ∼ 2t log n.

• (Randomized adversarial) Studying the oblivious model can inform better con-
structions of adversarial codes. The same technique produces, with probability
at least 1 − 2−n, an efficiently encodable/decodable code correcting t adversar-
ial deletions with redundancy ∼ (2t + 1) log n, nearly matching the existential
redundancy of ∼ 2t log n.

The common idea behind these results is to reduce the hash size by modding by a
prime chosen (randomly) from a small subset, and including a small encoding of the
prime in the hash.

∗Department of Computer Science, Technion–Israel Institute of Technology. roni.con93@gmail.com.
This work was supported by the European Union (DiDAX, 101115134). Views and opinions expressed are
those of the author(s) only and do not necessarily reflect those of the European Union or the European
Research Council Executive Agency. Neither the European Union nor the granting authority can be held
responsible for them.

†Math & CS Department, Santa Clara University. Email: rli6@scu.edu. Research supported by NSF
grant CCF-2347371

1

mailto:roni.con93@gmail.com
rli6@scu.edu

Contents

1 Introduction 3
1.1 Our results . 5
1.2 Related work . 8
1.3 Organization . 9

2 Technical Overview 9

3 Preliminaries 11
3.1 Equivalence to Randomized Document Exchange 11
3.2 Concentration Inequalities . 12
3.3 Prime Number Theorem . 13
3.4 The code of [Bel15] . 13

4 Existential Result and Lower Bound 13
4.1 Oblivious deletions =⇒ Random deletions in the average-case 14
4.2 Lower bound on the redundancy of oblivious deletion codes 15
4.3 Random construction . 16

5 Explicit oblivious deletion codes with redundancy ∼ 2t log n 17

6 List decoding implies oblivious 19

7 Randomized explicit oblivious and adversarial codes approaching the ex-
istential bound 20
7.1 Randomized explicit: Oblivious with ∼ (t+ 1) log n redundancy 20
7.2 Randomized Explicit: Adversarial with ∼ (2t+ 1) log n redundancy 21

8 Appendix 27
8.1 Proof of Lemma 3.4 . 27
8.2 Proof of Theorem 4.4 . 28

2

1 Introduction

Error-correcting codes (hereafter just codes) play a fundamental role in ensuring the reliabil-
ity and integrity of data in modern communication systems. As information is transmitted
or stored, it is often subject to noise, interference, or other disruptions that can lead to errors
in the data. Codes add redundant information to the original data, allowing them to detect
and, in many cases, correct errors without the need for retransmission.

Tremendous progress has been made over the decades — since the pioneering works of
Shannon [Sha48] and Hamming [Ham50] — on the design of efficient codes that can recover
from bit flips and erasures, under both probabilistic and adversarial noise models. Deletions
— errors that remove a symbol from then transmitted word — are another important and
well-studied type of error. Although there has been substantial advancement in recent years
in understanding deletions errors, our comprehension of this model still lags behind that of
codes for correcting erasures and flips.

The main challenge in correcting deletion errors lies in the loss of synchronization between
the sender and the receiver. Consider the codeword 1001011. If deletions occur at positions
2 and 5, the received word becomes 10111. Unlike the erasure setting (where the received
word in this case would be 1?01?11, explicitly indicating the missing positions), here, we do
not know where the errors occurred. Moreover, due to the nature of deletions, most bits are
shifted from their original positions, making it even harder to recover the original message.

The problem of correcting deletions has been primarily studied for two error models:
adversarial and randomized. In the adversarial setting, the error channel is an adversary that
sees the entire codeword, has unlimited computational power, and applies a fixed number
of deletions. In the randomized setting, the channel deletes every bit of the codeword
independently with some fixed probability. We refer the reader to the following excellent
surveys for results in both settings [Mit08, MBT10, CR20, HS21].

In this work, we focus on the oblivious model, where t deletions are arbitrary but oblivious
to the encoded codeword. Viewed another way, the deletions are applied by an adversary
that knows the message but not the codeword. For deterministic codes, the oblivious model
is equivalent to the adversarial model, but if the encoding may be randomized, the oblivious
model may permit less redundancy and more error tolerance.

Definition 1.1 (Oblivious Deletions Code). A stochastic code with randomized encoding
function Enc and (deterministic or randomized) decoding function Dec is a t oblivious deletion
code with error ε if for all messages m and deletion patterns τ applying at most t deletions,
we have that

Pr[Dec(τ(Enc(m))) ̸= m] ≤ ε ,

The randomness of the encoder is private to the encoder and not known to the decoder.

In this paper, we study oblivious deletion-correcting codes in the regime where the number
of deletions, t, is a constant independent of the code length, n. We believe that this study
of oblivious deletions is important and timely for several reasons.

1. First, the oblivious model is a natural model that bridges the gap between the ad-
versarial and random models. For more well-studied types of errors like bit-flips and

3

erasures, the oblivious model arises naturally and is well studied. For bit-flip and era-
sure errors, the oblivious channel is a specific instance of a broader class of channels
known as arbitrarily varying channels (AVCs), which have been extensively studied in
information theory (see the survey by Lapidoth and Narayan [LN98]). For bit-flip and
erasure errors, we know their capacities for oblivious channels are 1−H(p) and 1− p
[CN88, Lan08]1, matching the capacity for random channel, and there are explicit and
efficient constructions [GS16]. Thus, even though oblivious errors represent a stronger
error model than random errors, reliable communication is still achievable at the same
rate in both cases. Our results, along with those in [GL20], demonstrate a similar
story for oblivious deletions. Thus, while the errors in the oblivious model are applied
adversarially, coding for oblivious errors is often more similar to coding for random
errors. In this sense, the model bridges the adversarial and random error models.

2. Second, the oblivious model is well-motivated for DNA storage, one of the main moti-
vations for deletion codes. In DNA storage systems, digital data is encoded and stored
in DNA molecules sequences (with a process called synthesizing), utilizing the high
density storage capacity, durability, and longevity of DNA for long-term data preser-
vation. Deletions appear naturally in DNA-based storage and thus codes that can
correct them are very much needed to ensure the reliability of the stored data. The
nature of errors in DNA-based storage systems is highly dependent on elements such
as the technology that was used to synthesize (write) and sequence (read) the data
and the environment in which the molecules are stored. Thus, the error model, though
not adversarial, is not easily predictable. The oblivious model is ideally suited for this
context, when the noise arises from a complex or poorly understood physical process
(where the exact error distribution is unknown), but not by an adversary that sees the
codeword and selects the worst-case deletions accordingly. For a comprehensive survey
about recent advancements regarding coding for DNA-based storage systems, we refer
the reader to [SKSY24].

3. Third, studying the oblivious model is timely given the barriers to progress in the
adversarial model. Designing explicit codes that can correct a constant number of
adversarial deletions has received significant attention in recent years (see Table 1 for
a list of works), but there appear to be barriers to progress. Adversarial t-deletion-
codes need redundancy at least ∼ t log n, but existentially the best codes only achieve
redundancy ∼ 2t log n. This is only beaten for the t = 1 deletion case, where the
Varshamov–Tenengolts code [VT65] achieves optimal redundancy ∼ log n. For t ≥ 2,
this factor-of-2 redundancy gap is a well-known barrier.

There is also a gap between the existential construction and the best known explicit
constructions. For t = 2 deletions, Guruswami and H̊astad [GH21], improving on
[GS18, SRB19], gives a construction matching the existential redundancy ∼ 4 log n
and closing this gap. However, for more deletions, t ≥ 3, a gap remains. Several
constructions give an asymptotically optimal redundancy of Θ(t log n), but the best
construction only achieves redundancy ∼ 4t log n [SGB20]. Given these barriers, study-
ing the oblivious model is relevant and timely.

1H(·) denotes the binary entropy function

4

Codes t Redundancy Explicit? Polytime? Model
Existential bound all t ∼ 2t log n No No Adversarial
VT Code [VT65] 1 ∼ log n Yes Yes Adversarial

[GS18] 2 ∼ 8 log n Yes Yes Adversarial
[SRB19] 2 ∼ 7 log n Yes Yes Adversarial
[GH21] 2 ∼ 4 log n Yes Yes Adversarial
[Bel15] all t O(t2 + t log n) Yes Yes Adversarial (D.E)
[BGZ17] all t O(t2 log t log n) Yes Yes Adversarial

[HSS18, CJLW22] all t O(t log2(n/t)) Yes Yes Adversarial (D.E)
[SB20] all t ∼ 8t log n Yes Yes Adversarial
[SGB20] all t ∼ 4t log n Yes Yes Adversarial

Theorem 1.8 all t ∼ (2t+ 1) log n Yes, Random Yes Adversarial

Existential bound all t ∼ t log n No No Oblivious
[CGK16] all t O(t2 log n) Yes Yes Oblivious (D.E)

[BZ16] all t O(t log2 t+ t log n) Yes Yes Oblivious (D.E)
[Hae19] all t O(t log(n/t)) Yes Yes Oblivious (D.E)

Corollary 1.6 2 ∼ 3 log n Yes Yes Oblivious
Theorem 1.4 all t ∼ 2t log n Yes Yes Oblivious
Theorem 1.7 all t ∼ (t+ 1) log n Yes, Random Yes Oblivious

Lower bounds all t ≥ t log n Adv/Obliv

Table 1: t deletion codes under adversarial and oblivious errors. For readability, multi-
plicative factors of 1 + o(1) are suppressed by the ∼ notation. The Polytime column means
polynomial time encodable and decodable, assuming t is a constant. The (D.E.) in the Model
column means a result that was originally presented for the respective document exchange
variant.

We demonstrate that, while the oblivious model has practical relevance like the adver-
sarial model, we can circumvent the barriers imposed by the adversarial models and
construct less redundant codes (Theorem 1.4, Corollary 1.6, Theorem 1.7). As a basic
illustration of this, the above factor-of-2 gap — between the best existential redundancy
and lower bound for adversarial deletions — does not exist for oblivious deletions (see
Proposition 1.2 and Proposition 1.3). Further, as we demonstrate, studying the obliv-
ious model can be a stepping stone to better constructions in the adversarial model.
We found better constructions for oblivious deletion codes with a randomized construc-
tion (Theorem 1.7), and the same techniques yield better constructions of adversarial
deletion codes with randomized code constructions (Theorem 1.8).

1.1 Our results

As far as we know, the oblivious-deletion model has only been explicitly studied by Gu-
ruswami and Li [GL20], who focused on the regime where the number of deletions is a
constant fraction of the codeword length (another work [HER18] considered a relaxed set-
ting where the decoder succeeds with high probability over a uniformly random codeword).

5

Oblivious deletions have also been studied implicitly in the form of an equivalent problem
called randomized document exchange [BZ16, CGK16, Hae19] (see Related Work, Section 1.2
and Preliminaries, Section 3.1). This work considers the regime in which the number of dele-
tions is a constant independent of the codeword length. Our results, along with prior work,
are summarized in Table 1.

Existential result and lower bound. We first show the optimal redundancy for t obliv-
ious deletion codes is ∼ t log n by giving matching constructions and impossibility results.
This stands in contrast to the adversarial model, where there is a significant gap between
the best existential construction and impossibility result. We first show the lower bound,
that any code correcting t oblivious deletions must have redundancy of at least ∼ t log n.
We note that our lower bound is stronger than any lower bounds that may be implicit from
the document exchange literature, because our lower bound holds even for non-systematic
codes.

Proposition 1.2. Let n be a large enough integer. Let C be a code with block length n that
can correct t oblivious deletions with error ε ≤ 1/16. Then, the redundancy of C is at least
t log n−Ot(log log n).

We complement this result by showing that a random code construction gives an oblivious
code with optimal redundancy (up to some lower-order terms).

Proposition 1.3. Let t be a constant integer and let n be a large enough integer that does
not depend on t. Let ε ∈ (0, 1). Then, there exists a t oblivious deletion code with error
ε, redundancy t log n + Ot,ε(log log n) and the amount of randomness the encoder uses is
log log n+Ot,ε(1).

Explicit oblivious deletion codes. Next, we turn to explicit constructions.

Theorem 1.4. There exists t oblivious deletion code with error ε and redundancy 2t log n+
Ot((log log n)

2 + log 1
ε
), encoding time Õ(n) and decoding time Õ(nt+1).

This gives an explicit t oblivious deletion code that achieves a redundancy within a factor-
of-2 of optimal. Our construction also matches (up to lower order terms) the existential
redundancy ∼ 2t log n of adversarial deletion codes, which is not known to be achievable by
explicit adversarial codes for t ≥ 3.

List-decoding implies oblivious. Our next result connects deletion list decodable codes
with oblivious deletions, showing that an explicit deletion list-decodable code gives an explicit
oblivious deletion code.

Theorem 1.5. Given any code that is (t, L) list-decodable against deletions with encod-
ing and decoding times TEnc and TDec, and redundancy rlist = rlist(n), we can construct in
deterministic poly log n time a t oblivious deletion code with error ε that has redundancy
rlist(n) + Ot(log(L/ε) + log log n), is encodable in time TEnc + Õt(n) and decodable in time
TDec + Õt(Ln).

6

We can combine this with a result of Guruswami and H̊astad [GH21] that gives codes
with redundancy 3 log n + O(log log n) that are list-decodable against 2 deletions with list
size 2. This yields oblivious deletion codes against 2 deletions with similar redundancy.

Corollary 1.6. There exists an explicit 2 oblivious deletion code with error ε, redundancy
3 log n+O(log log n), and encoding and decoding times Õ(n).

Observe that this 2 oblivious deletion code has redundancy that surpasses the existential
bound in the adversarial case. Namely, while the best known (non-explicit) 2-deletion cor-
recting code has redundancy ∼ 4 log n, we achieve explicit and efficient 2 oblivious deletion
codes with redundancy ∼ 3 log n.

Theorem 1.5 further motivates studying list-decoding against deletions. We ask the
obvious follow-up question, which would imply explicit oblivious deletion codes beyond the
adversarial existential bound for all constant t:

Question. Are there explicit codes list-decodable against t deletions with constant list size
and redundancy ∼ c log n for c < 2t, or, ideally, c = t?2

Randomized Explicit constructions approaching the existential bound. Our next
results benefit from the power of randomness when constructing the code. Specifically, we
show that there is a randomized process that, with probability 1−2−Ω(n), produces codes that
are t oblivious deletion codes with redundancy ∼ (t+ 1) log n, almost matching the optimal
redundancy ∼ t log n, and substantially beating the adversarial existential redundancy ∼
2t log n.

Theorem 1.7. For all positive integers t and ε ∈ (0, 1), for n sufficiently large, there exists a
randomized construction that, in time Õ(n), with probability 1− 2−8n, produces a t oblivious
deletion code with decoding error ε, redundancy (t + 1) log n + O(log log n) + O(log(1/ε)),
encoding time Õ(n) and decoding time Õ(nt+1).

Next, we show that the same randomized construction also gives a t-adversarial deletion
code that almost matches the adversarial existential redundancy ∼ 2t log n.

Theorem 1.8. For all positive integers t, and n sufficiently large, there exists a randomized
construction that, in time Õ(n), with probability 1− 2−8n, produces a t-adversarial deletion
code with redundancy ∼ (2t+ 1) log n, encoding time Õ(n) and decoding time Õ(nt+1).

Remark 1.9. Our oblivious code constructions in Theorem 1.4 and Theorem 1.7 enjoy two
additional properties. First, they are systematic, meaning that for every message m, the
encoded codeword c begins with m in its first |m| bits (see Definition 3.2 for a formal defi-
nition). Second, the decoding algorithm of these codes never outputs an incorrect message.
Formally, for every message m and every deletion pattern τ , we have that

Pr[Dec(τ(Enc(m))) ∈ {m,⊥}] = 1 and Pr[Dec(τ(Enc(m))) =⊥] ≤ ε .

We observe that the codes in Theorem 1.8 is also systematic, but the codes given in Propo-
sition 1.3 and Corollary 1.6 are not systematic.

2We note that in [HER19, Theorem 2], the authors construct list-decodable codes against t deletions with
list size Ot(1) and redundancy ∼ 2t log n. Combining with Theorem 1.5, we get another construction of t
oblivious deletion with redundancy ∼ 2t log n, as in Theorem 1.4.

7

1.2 Related work

We now describe additional related works.

Document exchange. Deletion codes are, up to lower order terms in the redundancy,
equivalent to the (single-round) document exchange problem [Orl91]. In the document ex-
change problem Alice and Bob have documents represented by strings x and x′, respectively.
Neither knows the others’ document, but they are promised the documents are “similar.”
Alice’s goal is to send a hash (or summary) to Bob so that Bob can learn x. The main
question is: how long does the hash need to be (as a function of the similarity) for Bob to
learn x (efficiently).

Most relevant to deletion codes is the setting where Bob’s document x′ is a subsequence
of Alice’s document x obtained by t deletions, but the problem is studied more generally
when x and x′ are at bounded edit distance or hamming distance. The edit distance case is
equivalent to our setting up to constant multiplicative factors in the hash size.

If Alice’s hash is a deterministic function of her string x (this is deterministic document
exchange), the optimal hash size is equal to, up to lower order terms in the redundancy,
the optimal redundancy for correcting t adversarial deletions (see [Hae19, CJLW22]). If
Alice’s hash is a randomized function (with private randomness) and Bob recovers with
high probability (this is randomized document exchange), the optimal hash size is equal
to, up to lower order terms in the redundancy, the optimal redundancy for correcting t
oblivious deletions. The randomized–oblivious equivalence holds for the same reason as the
deterministic–adversarial equivalence, but we justify it for completeness in Section 3.1: in
short, we can encode the hash itself in a t-adversarial-deletion code at negligible cost (when
t≪ n).

The document exchange problem has been the subject of extensive research [BGM88,
Orl91, BL91, AGEA94, CPSV00, SNT04, IMS05, Jow12, Bel15, BZ16, CGK16, Hae19,
CJLW22]. Orlitsky showed that the hash needs to have length Ω(t log(n/t)) bits. He also
showed that one can compute in exponential time a hash of Θ(t log(n/t)) bits. For determin-
istic document exchange, Belazzougui [Bel15] achieved a hash of size Θ(t2 + t log2 n). Later,
two independent works [Hae19, CJLW22] achieved a hash of size Θ(t log2(n/t)) which is near
optimal. The problem of designing an efficient deterministic document exchange protocol
with optimal hash size Θ(t log(n/t)) remains open for t = Ω(n). For randomized document
exchange, [CGK16, BZ16] achieved hash size Θ(t2 log n) and Θ(t log2 t+t log n), respectively.
Later, Haeupler [Hae19] achieved optimal (randomized) hash size Θ(t log(n/t)).

Codes against oblivious errors and stochastic codes Several works have studied
codes that correct from oblivious substitution and erasure errors. Langberg [Lan08] was the
first to explicitly define oblivious channels, though the oblivious channel is a specific instance
of a broader class of channels known as arbitrarily varying channels (AVCs), which have been
extensively studied in information theory (see the survey by Lapidoth and Narayan [LN98]).
The capacities of the oblivious substitution channel and erasure channels are 1−H(p) and
1− p, respectively [CN88]. In [GS16], Guruswami and Smith provided the first explicit and
efficient codes for the oblivious substitution channel that achieve capacity.

We re-emphasize that codes for the oblivious errors must be stochastic to achieve better

8

rates than for adversarial errors. Stochastic codes have also found applications in the design
of codes against channels that are computationally bounded. Lipton [Lip94], Micali et al.
[MPSW05], Chen et al. [CJL15], Guruswami and Smith [GS16], and Shaltiel and Silbak
[SS21a, SS21b, SS22, SS24] studied various computationally bounded channels: some defined
by polynomial-size circuits, others by online or space-bounded constraints.

The binary deletion channel. The binary deletion channel with parameter p (BDCp) is
the most natural channel that models random deletions. More specifically, in this channel,
each bit is deleted independently at random with probability p. Tremendous efforts were put
on determining the capacity of the BDCp and the reader is referred to the excellent surveys
[Mit08, CR20] and references therein.

Since our interest in this paper is on correcting a constant number of oblivious deletions,
a closely related question is correcting t random deletions. Thus, of particular interest to
our question is the capacity of the binary deletion channel in the regime where the deletion
probability goes to 0. This question was addressed in two independent papers [KMS10,
KM13] where it was shown that when p→ 0, the capacity of the BDCp is 1− (1− o(1))H(p)
(where the o(1) goes to 0 as p→ 0).

List decoding vs other error models. Theorem 1.5 shows a connection between list-
decoding deletions and oblivious deletions and further motivates the study of list-decoding
against deletions. Like oblivious errors, list-decoding can be seen as a bridge between the
adversarial and random error models, and exploring the connections between these various
error models is a fundamental question. Along these lines, one recent work [PSW24] answered
a long-standing question by showing that list-decoding from adversarial substitutions is
closely linked to random substitutions (known as the symmetric channel): any capacity-
achieving list-decodable code with sufficiently large Hamming distance also achieves capacity
on the symmetric channel.

1.3 Organization

In Section 2, we give an overview of the main technical ideas in our constructions. In Sec-
tion 3, we give some preliminaries for our constructions. In Section 4, we show Proposition 1.2
and Proposition 1.3, that the optimal redundancy for t oblivious deletions is ∼ t log n. In
Section 5, we show Theorem 1.4, giving explicit t oblivious deletion codes with redundancy
∼ 2t log n. In Section 6, we show Theorem 1.5, that list-decodable deletion codes yield obliv-
ious deletion codes. In Section 7, we show Theorem 1.7 and Theorem 1.8, our randomized
constructions of oblivious deletion codes and adversarial deletion codes.

2 Technical Overview

Our main idea for obtaining t oblivious deletion codes, which is based on [SGB20], is to
take t-adversarial-deletion hashes, modulo a random prime. We first illustrate this with
Theorem 1.4, giving explicit t oblivious deletion codes with redundancy ∼ 2t log n, then
sketch our other results, which are variations on this idea.

9

By the equivalence between randomized document exchange and systematic oblivious
deletion codes (Lemma 3.4), it suffices to construct randomized document exchange proto-
cols correcting t deletions with similar redundancy. Equivalently, it suffices to construct a
systematic code — a code whose encoding is m 7→ m ◦ h(m) for some hash h(m) — for
the easier setting that the hash h(m) is transmitted noiselessly and only the message is
corrupted. The equivalence holds because we can encode the hash in a t deletion code at
negligible cost (see proof of Lemma 3.4).

Our randomized document exchange hash h(·) is computed as h(m) = (huniq(m) mod p, p),
where huniq : {0, 1}n → {0, 1}runiq is a deterministic document exchange hash with reasonable
(but not necessarily optimal) redundancy r = poly log n, and where p is a prime sampled
uniformly at random from a set of Õ(nt) primes. By the prime number theorem, we can
sample our prime from primes p ≤ Õ(nt), so each of (huniq(m) mod p) and p can be stored
in ∼ t log n bits, for a total redundancy of ∼ 2t log n. The decoder is the trivial decoder
that, given a received word z and a hash (g, p), computes the hash huniq(m

′) mod p of each
supersequence m′ of the received word z, and outputs the (hopefully) unique supersequence
m′ with the matching hash mod p.

Now we see why this is correct. For any message m, and any deletion pattern τ , there are
at most nt supersequences of the received word τ(m). Importantly, the randomness of the
hash is independent of τ . Identify the output of huniq with a number in [2runiq]. Any of the
nt supersequences of τ(m) have pairwise distinct hashes by the definition of deterministic
document exchange. Thus, by the Chinese Remainder Theorem, the hash h(m) collides with
any other hash on at most runiq primes; that is, for any m′ ̸= m, huniq(m) − huniq(m

′) ≡ 0
mod p for at most runiq distinct primes. Hence, there are at most nt · runiq “bad” primes
that cause a collision involving the hash huniq(m). Thus, if we sample a prime from a set of
at most nt · runiq/ε primes, we avoid all bad primes with probability 1− ε, so our decoding
correctly returns the message m with probability 1− ε. This is true for all m and τ , so we
have our oblivious deletion code.

We can modify this for our other results as well.

• We now sketch the idea of Theorem 1.5, which derives an oblivious deletion code from
list-decodable deletion codes. Assume for simplicity the list-decodable deletion code is
systematic, with hash hlist : {0, 1}n → {0, 1}rlist (the non-systematic case is similar).
Choose the hash h(m) = (hlist(m), huniq(m) mod p, p) for some p sampled randomly
from a set of L

ε
polylog n primes p. Now our decoder list-decodes using hlist(m), then

deduces the correct message from the list using huniq(m) mod p and p. Deducing the
correct message from the list only requires distinguishing the correct message from L
other messages with probability 1−ε, which requires a negligible O(log(L/ε)+log log n)
redundant bits.

• To obtain better redundancy with a randomized explicit construction (Theorem 1.7),
we first sample a set P of O(n/ε) primes from the set of all primes Pall smaller than
Õ(nt), where ε is the decoding error.3 This set P defines the code. Now, to encode,
we sample from P rather than Pall. This yields redundancy ∼ (t + 1) log n, rather
than ∼ 2t log n, because it only takes log n bits (rather than t log n bits) to index the

3we actually sample from primes in [M/2,M], where M = Θ̃(nt).

10

prime. By concentration inequalities, for any message m and deletion pattern τ , with
probability at least 1− 2−10n, the set P contains at least 1− ε-fraction of primes that
don’t cause a collision. Union bounding over m and τ gives that the resulting code is
an oblivious deletion code with overwhelming probability.

For a randomized construction of adversarial deletion codes (Theorem 1.8), we can use
the same idea. This time, we sample a set of O(n) primes from the set of all primes
Pall that are at most Õ(n2t), giving a redundancy of ∼ (2t+ 1) log n.

3 Preliminaries

All logs are base 2 unless otherwise specified. ln(x) is log base e. For an integer k, we denote
[k] = {1, 2, . . . , k}. Throughout, we identify integers with their binary representations and
vise versa, so that, for example, we identify [2a] with {0, 1}a, and we may speak of x mod p
for a binary string x and a prime p. We use Landau notation O(·),Ω(·),Θ(·), o(·). We use
the notation Õ(·), Ω̃(·), Θ̃(·) to indicate that polylog factors are suppressed, and we use the
notation Oa(·),Ωa(·),Θa(·) to indicate that multiplicative factors depending on variable a
are suppressed. Throughout, the notation ∼ suppresses 1± o(1) factors.

A substring of a string s ∈ {0, 1}n is obtained by taking consecutive symbols from s while
a subsequence of a string of s is obtained by deleting some (possibly none) of the symbols
in s. A supersequence of a string s is another string s′ which contain s as a subsequence.
We write x ⊑ y to say that x is a subsequence of y. A run in a string s is a single-symbol
substring of s of maximal length. Every string can be uniquely written as the concatenation
of its runs. For example, if s = 0111001, then s is decomposed into 0 ◦ 111 ◦ 00 ◦ 1 where
the symbol ◦ denotes concatenation of two strings. A deletion pattern is a function τ that
removes a fixed subset of symbols from strings of a fixed length.

It is well known that for any x ∈ {0, 1}n−t, the number of supersequences of length n is
exactly

∑t
i=0

(
n
i

)
(see, e.g., [Lev01, Equation 24]). For our purposes, we use the following

crude upper bound.

Lemma 3.1. Let n and t be integers4 such that 2 ≤ t < n/2 and let z ∈ {0, 1}n−t. The
number of strings s ∈ {0, 1}n such that z is a subsequence of s is at most nt.

Proof. We wish to show
∑t

i=0

(
n
i

)
≤ nt. For t = 2, we can prove this bound directly, and for

t ≥ 3, we can use
∑t

i=0

(
n
i

)
≤ (t+ 1)

(
n
t

)
≤ (t+ 1)nt/t! ≤ nt.

3.1 Equivalence to Randomized Document Exchange

We show that systematic oblivious deletion codes are equivalent (up to lower order redun-
dancy terms) to randomized document exchange hashes. First, we define a systematic code.

Definition 3.2 (Systematic code). A code with encoding function Enc : {0, 1}n → {0, 1}n+r

is systematic if, for all x, the first n bits of Enc(x) are x (with probability 1).

4The bound is slightly incorrect for t = 1, but all our results are irrelevant anyway for t = 1, where the
VT-code [VT65] achieves optimal redundancy even for adversarial errors, so we just state and use the t ≥ 2
version in favor of a cleaner bound.

11

Randomized document exchange is similar to systematic codes for oblivious deletions,
but we assume the redundant symbols are uncorrupted.

Definition 3.3 (Deterministic and Randomized document exchange). A deterministic doc-
ument exchange protocol for length n messages and t deletions is given by a hash function
h : {0, 1}n → {0, 1}r and a decoding function Dec : {0, 1}n−t × {0, 1}r → {0, 1}n such that,
for all x and all subsequences x′ of length n− t, we can recover x from x′ and h(x). That is,
Dec(x′, h(x)) = x.5

A randomized document exchange protocol with error ε is a document exchange protocol
such that the hash function is randomized and we recover x from x′ and h(x) with high
probability: Prh(·)[Dec(x

′, h(x)) = x] ≥ 1− ε.

By encoding the redundant bits in a t-deletion code, we get that these two models are
equivalent. This equivalence arises for the same reason that deterministic document ex-
change is equivalent to adversarial deletion codes (see, e.g., [Hae19, CJLW22]). We note this
connection is implicit in [HER18]. For completeness, we state this equivalence in the next
lemma and defer its proof to the appendix (Section 8.1).

Lemma 3.4. [Randomized document exchange is equivalent to systematic oblivious deletions]
The following hold:

1. Suppose we have a systematic oblivious t-deletion code with n message bits, r redun-
dancy bits, encoding time TE, and decoding time TD. Then we can construct in O(n)
time a randomized document exchange protocol with length n, hash length r, distance
t, error ε, encoding time TE +O(n), and decoding time TD +O(n).

2. Suppose we have a randomized document exchange protocol with length n, hash length
r, distance t, error ε, encoding time TE, and decoding time TD. Then we can construct
in O(n) time a systematic oblivious t-deletion code with n message bits, r+O(t log(r))
redundancy bits, encoding time TE+O(n+poly r), and decoding time TD+O(n+poly r).

3.2 Concentration Inequalities

We use the following multiplicative version of the Chernoff bound.

Lemma 3.5 (Multiplicative Chernoff bound; see, e.g., [MU17]). Suppose X1, . . . , Xn are in-
dependent identically distributed random variables taking values in {0, 1}. Let X =

∑n
i=1 Xi

and µ = E[X]. Then, for any 0 < α ≤ 1:

Pr[X > (1 + α)µ] ≤ e−
µα2

2+α

Also, we shall use Hoeffding’s inequality.

Lemma 3.6 (Hoeffding’s inequality; see, [Hoe94]). Suppose that X1, . . . , Xn are independent
random variables with finite first and second moments and ai ≤ Xi ≤ bi for 1 ≤ i ≤ n. Let
X =

∑n
i=1Xi and µ = E[X]. Then, for any t > 0 we have

Pr[X − µ > t] < exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

5typically, the definition states that x′ is any string with ED(x, x′) ≤ t, but this definition is equivalent
up to a constant factor in t, and for our work this definition is more relevant.

12

3.3 Prime Number Theorem

We utilize the prime number theorem.

Theorem 3.7 ([DLVP96, Had96]). Let π(N) denote the number of primes less than N .

Then limn→∞
π(N)

N/ lnN
= 1. In other words, for all ε > 0, there exists N0 such that, for all

N ≥ N0, π(N) ∈ [(1− ε)N/ lnN, (1 + ε)N/ lnN].

We use the following corollary of the prime number theorem that follows from plugging
in ε = 1/10.

Corollary 3.8 (See also Corollary 5.2 of [Dus18]). There exists an absolute constant N0

such that, for all N ≥ N0, the number of primes between N/2 and N is at least N/(10 lnN).

Proof. Let N0 be max(2N ′
0, 100), where N ′

0 is from the prime number theorem with ε =
1/10. Then the number of primes in [N/2, N] is at least 0.9N/ lnN − 1.1(N/2)/ ln(N/2) >
N/(10 lnN).

3.4 The code of [Bel15]

We use as a black box the following construction of deterministic document exchange proto-
cols. We note that this construction does not achieve the state-of-the-art hash size, however,
it’s decoding algorithm is linear. When the hash size of this ingredient is less important, we
prefer this construction to get better decoding times.

Theorem 3.9 ([Bel15]). There exists a deterministic document exchange protocol for t dele-
tions with a hash of size O(t2 + t log2 n) and encoding and decoding time Õ(n).

4 Existential Result and Lower Bound

In this section, we prove Propositions 1.2 and 1.3. We first introduce a definition for a
deterministic code that corrects random deletions in the average-case.

Definition 4.1. A deterministic code C is called t-random deletion code (in the average-
case) with error probability ε if there exists a decoder Dec : {0, 1}n−t → C such that

Pr
c,τ

[Dec(τ(c)) ̸= c] ≤ ε

Here, the probability is over a uniformly random codeword and a uniformly random t deletion
pattern.

For the sake of readability, we will write t-random deletion code to refer to t-random
deletion code (in the average case).

This section is organized as follows. In Section 4.1, we show that if one has an oblivious
deletion code, then there also exists a deterministic code that is a t-random deletion code.
The lower bound on the redundancy of oblivious deletion codes (Proposition 1.2) is given
in Section 4.2 with the assistance of a result by Kalai, Mitzenmacher, and Sudan [KMS10]
that shows a lower bound on the redundancy of a t-random deletion code. In Section 4.3,
we show that a random construction results in an oblivious deletion code.

13

4.1 Oblivious deletions =⇒ Random deletions in the average-case

In this section, we show that if we have a t oblivious deletion code with error ε, then there
exists a deterministic code C that can correct t-random deletions with error Θ(

√
ε). Roughly

speaking, we construct C by “sampling” the oblivious code: For each message m, include
c = Enc(m) in the codebook. We then show that there exists such sampling for which the
resulting code is a t-random deletion code.

To describe the “sampling” process, we give a formal definition of a stochastic code (recall
that oblivious codes are stochastic codes, which means that their encoder is randomized).

Definition 4.2 (stochastic code). A stochastic binary code with redundancy r ∈ N, random-
ness length b ∈ N and block length n ∈ N is given by an encoder Enc : {0, 1}n−r × {0, 1}b →
{0, 1}n and a decoder Dec : {0, 1}∗ → {0, 1}n−r ∪ {⊥}.

Note that the encoder function Enc takes a message and a random string. However,
we mostly write Enc(v) to refer to the process of sampling a random u ← {0, 1}b and
then encoding the message v with Enc(v, u). Nevertheless, there are some places where we
explicitly write Enc(v, u) to indicate an encoding with a specific seed.

Claim 4.3. Let t be a constant integer and n be a large enough integer. Assume that D
is a stochastic code of length n, redundancy r, and assume that D is a t oblivious deletion
code with error ε. Then, there exists a deterministic code C that can correct from t-random
deletions with the same length and redundancy, and with error ≤ 2

√
ε.

Proof. Let D be an (Enc,Dec) stochastic code with redundancy r, length n. Define C =
{Enc(v) | v ∈ {0, 1}m} to be a deterministic code obtained by sampling 2m codewords via
the encoder of D. Since C is a deterministic code, we shall abuse notation and refer to C as
also being the encoding map from the space of messages to the codewords.

We shall define a new decoder Dec′ : {0, 1}n−t → {0, 1}n such that

Dec′(τ(c)) = C(Dec(τ(c))) .

Namely, the decoder of our deterministic code applies the decoder of the oblivious code to
get a message and then encodes it using our sampled code C.

Enumerate all the message by v1, . . . , v2m and their encoded codewords by c1, . . . , c2m ∈ C.
For every deletion pattern τ , define Iτ = |{i : Dec′(τ(ci)) ̸= ci}| to be the number of
codewords that are incorrectly decoded by the decoder of our deterministic sampled code C.

14

For every τ , we have that

E
c1,...,c2m

[Iτ] =
2m∑
i=1

Pr
c1,··· ,c2m

[Dec′(τ(ci)) ̸= ci]

=
2m∑
i=1

Pr
Enc(v1),...,Enc(v2m)

[C(Dec(τ(Enc(vi)))) ̸= C(vi)]

=
2m∑
i=1

Pr
Enc(v1),...,Enc(v2m)

[Dec(τ(Enc(vi)))) /∈ {vj|C(vj) = C(vi)}]

≤
2m∑
i=1

Pr
Enc(v1),...,Enc(v2m)

[Dec(τ(Enc(vi))) ̸= vi]

=
2m∑
i=1

Pr
Enc(vi)

[Dec(τ(Enc(vi))) ̸= vi]

≤
2m∑
i=1

ε

= ε · 2m ,

where the third equality follows since C might not be injective and therefore there can be a
set of multiple messages that give the correct codeword. The first inequality follows by noting
that vi clearly belongs to that set. The fourth equality follows by noting that, according to
Definition 1.1, the probability that the decoder fails is over the randomness of the encoding
process of the specific message.

Thus, summing upon all deletion patterns, we get Ec1,...,c2m [
∑

τ Iτ] ≤
(
n
t

)
ε2m, and thus,

there exists a choice of c1, . . . , c2m for which
∑

τ Iτ ≤
(
n
t

)
· ε2m. Fix c1, . . . , c2m to be such

a choice. It must be that for at least (1 −
√
ε) fraction of the deletion patterns, we have

that Iτ ≤
√
ε2m. Indeed, otherwise,

∑
τ :Iτ>

√
ε Iτ >

√
ε
(
n
t

)
·
√
ε2m =

(
n
t

)
ε2m, which is

a contradiction. Now, we compute the probability that upon a random codeword and a
random deletion pattern, the decoding fails. We have

Pr
i,τ

[Dec′(τ(ci)) ̸= ci] = Pr
τ
[Iτ >

√
ε2m] ·Pr

i
[Dec′(τ(ci)) ̸= ci|Iτ >

√
ε2m]

+Pr
τ
[Iτ ≤

√
ε2m] ·Pr

i
[Dec′(τ(ci)) ̸= ci|Iτ ≤

√
ε2m]

≤
√
ε+ (1−

√
ε) ·
√
ε

≤ 2
√
ε .

4.2 Lower bound on the redundancy of oblivious deletion codes

In [KMS10], Kalai, Mitzenmacher, and Sudan studied the setting where the channel is the
binary deletion channel with deletion probability p (BDCp). In this case, every bit is deleted
independently, with probability p. They showed that if C is a code that is robust against

15

the BDCp, in the regime where p is small, then the rate of C is at most 1− (1− o(1))H(p)
(where the o(1) goes to 0 when p→ 0).

However, to prove their result, they first proved a slightly weaker theorem which contains
two relaxations. First, they relax the channel to the case where there are exactly pn random
deletions. Second, the decoding algorithm succeeds on a random codeword and not on every
codeword. The statement of the theorem, rephrased to our setting, i.e., to the case where
the number of deletions is constant (independent of the block length), is given next.

Theorem 4.4. [KMS10, Theorem 2.2, rephrased] Let n be a large enough integer. Let C
be a code with block length n that is a t-random deletion code in the average case with error
probability ε. Then, the redundancy of C is at least

log

(
n

t

)
+ t− log(3t)− log(2/(1− ε))−O(t log log(n)) .

Remark 4.5. We remark that our statement is slightly different from [KMS10, Theorem
2.2]. Thus, for completeness, we provide a proof in the appendix.

We are now ready to prove Proposition 1.2 which is restated next.

Proposition 1.2. Let n be a large enough integer. Let C be a code with block length n that
can correct t oblivious deletions with error ε ≤ 1/16. Then, the redundancy of C is at least
t log n−Ot(log log n).

Proof. Let C be a code with block length n that can correct t oblivious deletions with error
ε. By Claim 4.3, we get that there exists a code C ′ with the same redundancy and block
length that can correct t random deletions in the average case with error 2

√
ε. Thus, by

Theorem 4.4, the redundancy of C (and C ′) is at least log
(
n
t

)
+t− log 3t− log(2/(1−2

√
ε))−

O(t log log n). The desired result is obtained by recalling that ε ≤ 1/16.

4.3 Random construction

In this section, we prove Proposition 1.3 which is stated here again, for convenience

Proposition 1.3. Let t be a constant integer and let n be a large enough integer that does
not depend on t. Let ε ∈ (0, 1). Then, there exists a t oblivious deletion code with error
ε, redundancy t log n + Ot,ε(log log n) and the amount of randomness the encoder uses is
log log n+Ot,ε(1).

Proof. Set s = ε−2 ·10t · log n and consider |C| messages m1, . . . ,m|C| where |C| = ε
2s
· 2n
nt . For

each message mi, we associate a multi-set of codewords Ei ∈ {0, 1}n of size s where every
element in Ei is a uniform, random vector in {0, 1}n. The encoder and the decoder of our
oblivious code are defined as follows

• Enc : {0, 1}log |C| → {0, 1}n. A message mi is mapped to a random element of Ei.

• Dec : {0, 1}n−t → {0, 1}log |C| ∪{⊥}. For a received word z of length n− t, the decoder
finds all messages mi where z is a subsequence of a possible encoding of mi (z < w for
some w ∈ Ei). If there is only one such message, the decoder returns that message.
Otherwise, the decoder return ⊥.

16

A string w ∈ Ei is called (τ, i) bad, if there exists u ∈ Ej where j ̸= i such that τ(w) ⊑ u.
By Lemma 3.1, the number of strings in {0, 1}n that contain z as a subsequence is at most
nt, and thus, the probability that there exists w′ in one of the Ejs such that τ(w) ⊑ w′ is at

most |C| · s · nt

2n
≤ ε/2.

We say a message mi is τ -bad if |{w ∈ Ei | w is (τ, i) bad}| > ε · s. Denote by Xτ
w the

random variable indicating that w is (τ, i) bad. Observe that for w,w′ ∈ Ei, X
τ
w and Xτ

w′

are independent events due to the process that was used to choose the Eis. Thus, we can
apply the Hoeffding’s inequality when bounding the probability that a fixed message mi is
τ -bad for a given τ .

Pr[mi is τ -bad] = Pr
Ei

[∣∣{w ∈ Ei | τ(w) is bad}
∣∣ ≥ εs

]
= Pr

Ei

[∑
w∈Ei

Xτ
w ≥ (1 + 1)

εs

2

]
≤ e−2ε2s/4

≤ n−5t

Let Xτ be the number of messages that are τ -bad and observe that E[Xτ] ≤ |C|/n5t.
Thus, by linearity of expectation, we get that E[

∑
τ Xτ] =

(
n
t

)
· |C|/n5t ≤ |C|/n4t. Therefore,

there exists some choice of randomness for which the sets E1, . . . E|C| are such that
∑

τ Xτ ≤
|C|/n4t. For this choice of sets, we define the set of messages to be all the messages that are
not τ bad for every τ . The number of such messages is at least |C| − |C|/n4t ≥ |C|/2, for
large enough n. Therefore, the redundancy of our code is at most

log(nt) + log 2s− log ε+ 1 ≤ t log n+ log log n+ log t− 3 log ε+O(1) ,

Now, we show that the probability of error is at most ε. In fact, we show something
stronger: that the decoder never outputs a wrong message and that the probability that
it outputs ⊥ is ≤ ε. Indeed, first observe that by the definition of the decoder, upon an
input τ(Enc(mi)) ∈ {0, 1}n−t, if there are w ∈ Ei and w′ ∈ Ej such that s ⊑ w and
s ⊑ w′, then it outputs ⊥. Since we always have that τ(Enc(mi)) < w for some w ∈ Ei,
we conclude that the decoder never outputs a wrong message. Second, for every message
mi and every t-deletion pattern τ , by our construction guarantees above, we have that
|{w ∈ Ei | w is (τ, i) bad}| ≤ ε|Ei|. The claim follows by recalling that our encoder selects
a uniform string in Ei.

5 Explicit oblivious deletion codes with redundancy

∼ 2t log n

We now prove Theorem 1.4, which gives explicit oblivious deletion codes with redundancy
∼ 2t log n. The following lemma is the core of the construction, showing how to turn a ”rea-
sonable” deterministic document exchange protocol into a randomized document exchange
protocol with redundancy ∼ 2t log n.

17

Lemma 5.1. Suppose there exists hashes of length f(n, t) for deterministic document-exchange
for t deletions on words of length n with encoding time E(n, t). Then there exist hashes of
length r = 2 log

(
n
t

)
+ log f(n, t) + log 100

ε
for randomized document exchange with error ε.

Furthermore, the encoding takes E(n, t)+polylog n time and the decoding takes E(n, t)·O(nt)
time.

Applying this with the construction in [Bel15], which achieves f(n, t) = O(t2 + t log2 n)
and E(n, t) = Õ(n), and then using the equivalence between randomized document exchange
and oblivious deletions (Lemma 3.4), we obtain Theorem 1.4.

Theorem 1.4. There exists t oblivious deletion code with error ε and redundancy 2t log n+
Ot((log log n)

2 + log 1
ε
), encoding time Õ(n) and decoding time Õ(nt+1).

Proof of Lemma 5.1. Let ε be the desired error. Let M = 100nt · f(n,t)
ε

and r = 2 logM =
2t log n+Ot(log log n). Let huniq : {0, 1}n → [2f(n,t)] be the hash for deterministic document
exchange.

Encoding. Define the hash h : {0, 1}n → {0, 1}r for our randomized document exchange
protocol as follows:

• The encoding chooses a random prime number p between M/2 and M . The hash is
(huniq(m) mod p, p).

Decoding. Suppose that z is the received word of length n−t (if it is a longer subsequence,
apply additional deletions arbitrarily) and (g, p) is the hash.

• By brute force search, find all supersequences m′ of z such that huniq(m
′) mod p = g.

If there is exactly one such m′, return m′, else return ⊥.

Correctness. Fix a message m of length n and a subsequence z of length n − t. Let
(huniq(m) mod p, p) be the hash of m. We show that with probability 1 − ε over the ran-
domness of the encoder, there are no supersequences m′ of z such that huniq(m

′) ≡ huniq(m)
mod p. Indeed, since huniq(·) is a hash for deterministic document exchange, then huniq(m

′) ̸=
huniq(m) for all supersequences m′ of z with m ̸= m′. We also have |huniq(m)− huniq(m

′)| ≤
2f(n,t), which means this difference has at most logM/2 2

f(n,t) ≤ 2f(n,t)
logM

prime factors greater

than M/2. Since there are at least M
10 logM

prime factors between M/2 and M by the Prime

Number Theorem (Corollary 3.8), the probability that huniq(m) ≡ huniq(m
′) mod p is at

most 2f(n,t)/ logM
M/(10 logM)

= 20f(n,t)
M

. By a union bound over the nt possible values of m′ (Lemma 3.1),

the probability that m is decoded incorrectly is at most nt · 20f(n,t)
M

< ε.

Runtime. The encoding takes time E(n, t), plus the time to generate the prime p, which
takes poly log n if we generate the O(M) ≤ Õ(nt) primes in advance. The decoding is
dominated by the brute force search, which searches

(
n
t

)
strings and checking each one takes

E(n, t) time.

18

6 List decoding implies oblivious

In this section, we show that an explicit and efficient list-decodable deletion code yields
an explicit and efficient oblivious code with effectively the same redundancy. We restate
Theorem 1.5 for convenience

Theorem 1.5. Given any code that is (t, L) list-decodable against deletions with encod-
ing and decoding times TEnc and TDec, and redundancy rlist = rlist(n), we can construct in
deterministic poly log n time a t oblivious deletion code with error ε that has redundancy
rlist(n) + Ot(log(L/ε) + log log n), is encodable in time TEnc + Õt(n) and decodable in time
TDec + Õt(Ln).

Proof. We describe the encoding and decoding algorithms, then justify the correctness and
runtime.

Encoding. Let Enclist : {0, 1}n → {0, 1}n+rlist be the encoding of the (t, L)-list-decodable
code. Let huniq : {0, 1}n+rlist → [2αt log

2 2n] be the hash of the deterministic document exchange
protocol in Theorem 3.9 on messages of length n+ rlist, where α > 0 is an absolute constant.
Let Rept(x) = xt

1x
t
2 · · ·xt

|x| denote the string x where each bit is repeated t times. Note that
Rept encodes a code that corrects t− 1 deletions.

Let P be the set of primes in [M/2,M], where M = 100 · αt · L
ε
· log2 2n. By the Prime

Number Theorem (Corollary 3.8), P has at least M
10 lnM

primes. Define a new encoding

function Enc′ : {0, 1}n → {0, 1}n′
, for n′ = n+ rlist + rrep for rrep

def
= (t+ 1)⌈log |P |+ logM⌉

where Enc′ chooses a uniformly random prime p from P , and then sets

Enc′(m) = Enclist(m) ◦ Rept+1(⟨p, huniq(Enclist(m)) mod p⟩). (1)

where ⟨p, huniq(m) mod p⟩ denotes the binary representation of (p, huniq(m) mod p). Since
p can be represented in ⌈log |P |⌉ bits and huniq(m) mod p can be represented in ⌈logM⌉
bits, the redundancy of this encoding is at most rlist + rrep ≤ rlist +O(t log tL/ε+ t log log n)

Decoding. Suppose we are given a received word z. Let z0 be the first n+ rlist − t bits of
z, and let z1 denote the last rrep− t bits of z. Run the list-decoding algorithm of C on z0 to
compute a list L of L messages. Run the repetition code decoder on z1, and let the decoded
word be ⟨p, g⟩ for some prime p and hash g. Then iterate through the list L to find messages
m such that huniq(m) mod p = g. If there is a unique m, return that m, else return ⊥.

Correctness. Fix a messagem and a deletion pattern τ , let z = τ(Enc′(m)) be the received
word, and let z0, z1 be the substrings of z in the decoding algorithm. By construction, z0
is a subsequence of Enclist(m) obtained by applying t deletions. Hence, the list-decoding
algorithm correctly determines a list L of L messages such that, (i) for each message m′,
the string z0 is a subsequence of Enc(m′), and (ii) the correct message m is in the list.
Similarly, z1 is a subsequence of Rept+1(⟨p, huniq(Enclist(m)) mod p⟩) obtained by applying t
deletions, so the repetition decoder correctly determines p and g = huniq(Enclist(m)) mod p.
For any m′ ̸= m in the list L, we must have huniq(Enclist(m)) ̸= huniq(Enclist(m

′)) as Enclist(m)

19

and Enclist(m
′) are distinct length-(|z0| + t) supersequences of z0. Further, their difference

satisfies |huniq(Enclist(m)) − huniq(Enclist(m
′))| ≤ 2αt log

2 2n. This means they share at most

logM/2 2
αt log2 2n ≤ αt log2 2n

log(M/2)
< ε

L
· M
10 lnM

≤ ε
L
· |P | common prime factors in P . The string

z0 is independent of the randomness of the encoding, so the list L is independent of the
randomness of the encoding. Hence, a random prime from P fails to distinguish m and m′

with probability at most ε
L
, so the probability a random prime fails to distinguish m from

all other list codewords m′ ∈ L is at most ε by the union bound. Thus, we fail to recover m
uniquely with probability at most ε, as desired.

Runtime. The construction takes time polylog n to compute the list of primes P . The
encoding time is the time Tenc to encode in the list-decoding hash, plus the time Õ(n) to
encode in the document exchange hash of Theorem 3.9, plus the time O(M) to choose a
prime and compute the mod, for a total time of Tenc+ Õ(tn). The decoding time is the time
Tdec to list-decode, plus the iteration to filter the list O(Ltn) + Õ(L · n), where we need to
check for each m in the list, whether huniq(Enclist(m)) mod p = g.

Combining this with the 2-deletion codes of Guruswami and H̊astad [GH21] gives obliv-
ious 2-deletion codes with redundancy ∼ 3 log n, which is Corollary 1.6.

Theorem 6.1 ([GH21]). There exist explicit codes encodable and decodable in linear time
O(n) with redundancy 3 log n + O(log log n) that are list-decodable against 2 deletions with
list size 2.

Corollary 1.6. There exists an explicit 2 oblivious deletion code with error ε, redundancy
3 log n+O(log log n), and encoding and decoding times Õ(n).

7 Randomized explicit oblivious and adversarial codes

approaching the existential bound

7.1 Randomized explicit: Oblivious with ∼ (t+1) log n redundancy

We now prove Theorem 1.7, which gives a randomized construction of t oblivious deletion
codes approaching the optimal lower bound and beating the adversarial existential bound.

Theorem 1.7. For all positive integers t and ε ∈ (0, 1), for n sufficiently large, there exists a
randomized construction that, in time Õ(n), with probability 1− 2−8n, produces a t oblivious
deletion code with decoding error ε, redundancy (t + 1) log n + O(log log n) + O(log(1/ε)),
encoding time Õ(n) and decoding time Õ(nt+1).

Proof. By Lemma 3.4, it suffices to give a protocol for randomized document exchange with
the provided redundancy, encoding time, and decoding time. We describe the construction,
encoding and decoding algorithms, then justify the correctness and runtime.

Construction. Let Pall be the set of all the primes in [M/2,M] for M = 100M0 lnM0 for
M0 = 4αε−1nt log n, where α is the absolute constant from Theorem 3.9. Randomly choose a
multiset P of 100n/ε primes chosen independently at random from Pall. This set P specifies
the code.

20

Encoding. Let huniq : {0, 1}n → {0, 1}r be a hash for deterministic document exchange
for t deletions, where r = αt log2 n and α is an absolute constant given by Theorem 3.9
(we can omit the t2 additive factor since we assume n is sufficiently large relative to t).

Our randomized document exchange hash is h(m, p)
def
= (huniq(m) mod p, p) for some p

chosen uniformly at random from P . Since we know p ∈ P , we can store a description of
p in log |P | = O(log n) + O(log(1/ε)) bits, so we can store h(m, p) in logM + log |P | ≤
(t+ 1) log n+O(log log n) +O(log(1/ε)) bits.

Decoding. Suppose z is a length n− t received word, and suppose (g, p) is the hash. By
brute force search, find all supersequences m′ of z such that huniq(m

′) mod p = g. If there
is exactly one such m′, return m′. Otherwise, return ⊥.

Correctness. By the Prime Number Theorem (Corollary 3.8), Pall has at leastM/10 lnM >
M0 primes.

Fix τ . We consider the probability (over the choice of P) that some message m ∈ {0, 1}n
is decoded incorrectly with probability at least ε (over the randomness of the encoder).

For any m, call a prime p good (with respect to m, τ) if our decoder recovers message
m given τ(m) and h(m, p) and bad otherwise. Since huniq(·) is a deterministic document
exchange hash, for any of the at-most-nt messages m′ that have τ(m) as a subsequence,
we have huniq(m) ̸= huniq(m

′). Since |huniq(m) − huniq(m
′)| ≤ 2αt log

2 n, there are at most

logM/2 2
αt log2 n ≤ α log n primes in Pall dividing huniq(m)−huniq(m

′). By a union bound over

the at-most-nt supersequences of τ(m), at most nt·α logn
|Pall|

< ε
2
fraction of the primes in Pall are

bad (with respect to m, τ). Thus, the number of bad primes in P is distributed as a binomial
distribution over |P | elements with mean µ < ε|P |/2. By the Chernoff bound (Lemma 3.5
with α = (ε|P |−µ)/µ ≥ 1), the probability that more than ε fraction of the primes in P are
bad is at most 2−α2µ/(2+α) ≤ 2−(ε|P |/2)·α/(2+α) ≤ 2−ε|P |/6 ≤ 2−10n where we used αµ ≥ ε|P |/2
and α ≥ 1. Thus, with probability at least 1−2−10n over the choice of P , for a fixed deletion
pattern τ and fixed m, string m is decoded correctly from τ(m) with probability at least
1− ε. By a union bound over all messages m and all deletion patters τ , with probability at
least 1 − 2n ·

(
n
t

)
· 2−10n ≥ 1 − 2−8n, for every m and τ , string m is decoded correctly from

τ(m) with probability at least 1− ε.

Runtime. We can construct the code (find P) with rejection sampling. The density of
primes is at least Ω(1

logn
) by the Prime Number Theorem (Theorem 3.7), so rejection sam-

pling finds enough primes in time Õ(n) with probability at least 1− 2−Ω(n). Encoding takes
time O(log n) to choose the prime P and Õ(n) to encode into h(·, ·). Decoding takes time
O(nt+1) to brute force search over m and hash each one with huniq.

7.2 Randomized Explicit: Adversarial with ∼ (2t + 1) log n redun-
dancy

Theorem 1.8. For all positive integers t, and n sufficiently large, there exists a randomized
construction that, in time Õ(n), with probability 1− 2−8n, produces a t-adversarial deletion

21

code with redundancy ∼ (2t+ 1) log n, encoding time Õ(n) and decoding time Õ(nt+1).

Proof. By the equivalence between adversarial deletion codes and deterministic document
exchange (see e.g., [CJLW22, Hae19]), it suffices to give a deterministic document exchange
protocol with the provided redundancy. We describe the encoding and decoding algorithms,
then justify the correctness and runtime.

Call strings m and m′ confusable if they share a length n− t subsequence. We have the
following straightforward lemma

Lemma 7.1. Fix m ∈ {0, 1}n. The number of m′ ∈ {0, 1}n that are confusable with m is at
most n2t.

Proof. The number of subsequences of m of length n − t is at most
(
n
t

)
≤ nt (choosing the

t deleted symbols). Each one of these subsequences is contained in at most nt strings in
{0, 1}n (Lemma 3.1).

Let huniq : {0, 1}n → {0, 1}r be a hash for deterministic document exchange for t deletions,
where r = αt log2 n for some absolute constant α > 0 (Theorem 3.9). Call a message/prime
pair (m, p) good — where m is a length n string and p is a prime — if, for all strings m′ ̸= m
confusable with m, we have huniq(m) mod p ̸= huniq(m

′) mod p.

Construction. Let Pall be the set of primes in [M/2,M] for M = 100M0 lnM0 for M0 =
2αn2t log n, where α is the absolute constant from Theorem 3.9. Randomly choose a multiset
P of 10n primes chosen independently at random from the primes Pall. This set P specifies
the code.

Encoding. Our deterministic document exchange hash is h2(m) = (huniq(m) mod p, p)
for some p chosen from P so that (m, p) is a good message/prime pair. We compute p by
brute force search. Since we know p ∈ P , we can store a description of p in log |P | = O(log n)
bits, so we can store h2(m) in log |P |+ logM ≤ (2t+ 1) log n+O(log log n) bits.

Decoding. Suppose z is a length n− t received string, and suppose (g, p) is the hash. By
brute force search, find all supersequences m′ of z such that huniq(m

′) mod p = g. If there
is exactly one such m′, return m′, else return ⊥.

Correctness. By the Prime Number Theorem (Corollary 3.8), Pall has at leastM/10 lnM >
M0 primes.

We consider the probability (over the choice of P) that some message m ∈ {0, 1}n is
decoded incorrectly. Since huniq(·) is a deterministic document exchange hash, for any of the
at-most n2t many messages m′ that are confusable with m, we have huniq(m) ̸= huniq(m

′).

Since |huniq(m)− huniq(m
′)| ≤ 2αt log

2 n, there are at most logM/2 2
αt log2 n ≤ α log n primes in

Pall dividing huniq(m) − huniq(m
′). Thus, for at most n2t · α log n primes p ∈ Pall, the pair

(m, p) fails to be good. Thus, at least 1 − n2t·α logn
|Pall|

> 1/2 of the primes in Pall form a good
pair with m. Thus, the probability that P fails to contain a good prime for m is at most
2−|P | ≤ 2−10n. Thus, with probability at least 1−2−10n over the choice of P , a fixed message

22

m is decoded correctly. By a union bound over the 2n possible messages m, with probability
at least 1− 2−9n, every message m is decoded correctly.

Runtime. We can construct the code (find P) with rejection sampling. The density of
primes is at least Ω(1

logn
) by the Prime Number Theorem, so rejection sampling finds enough

primes in time Õ(n) with probability at least 1−2−Ω(n). Encoding is dominated by the time
it takes to find a good prime for the message m. Indeed, we compute the n2t hashes huniq(m

′)
of all messagesm′ confusable withm, each of which takes time Õ(n), and then take all hashes
modulo p for all 10n primes in P . Overall, the encoding is done in time Õ(n2t+1). Decoding
takes time O(nt+1) to brute force search all the supersequences m′ of τ(m) and hash each
one with huniq.

References

[AGEA94] Khaled AS Abdel-Ghaffar and Amr El Abbadi. An optimal strategy for compar-
ing file copies. IEEE Transactions on Parallel and Distributed Systems, 5(1):87–
93, 1994.

[Bel15] Djamal Belazzougui. Efficient deterministic single round document exchange for
edit distance. arXiv preprint arXiv:1511.09229, 2015.

[BGM88] Daniel Barbara and Hector Garcia-Molina. Exploiting symmetries for low-cost
comparison of file copies. In [1988] Proceedings. The 8th International Confer-
ence on Distributed, pages 471–479. IEEE, 1988.

[BGZ17] Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. Efficient low-
redundancy codes for correcting multiple deletions. IEEE Transactions on In-
formation Theory, 64(5):3403–3410, 2017.

[BL91] Daniel Barbara and Richard J. Lipton. A class of randomized strategies for
low-cost comparison of file copies. IEEE Transactions on Parallel & Distributed
Systems, 2(02):160–170, 1991.

[BZ16] Djamal Belazzougui and Qin Zhang. Edit distance: Sketching, streaming, and
document exchange. In 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), pages 51–60. IEEE, 2016.

[CGK16] Diptarka Chakraborty, Elazar Goldenberg, and Michal Kouckỳ. Streaming algo-
rithms for embedding and computing edit distance in the low distance regime. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing,
pages 712–725, 2016.

[CJL15] Zitan Chen, Sidharth Jaggi, and Michael Langberg. A characterization of the
capacity of online (causal) binary channels. In Proceedings of the forty-seventh
annual ACM symposium on Theory of computing, pages 287–296, 2015.

23

[CJLW22] Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Deterministic document
exchange protocols and almost optimal binary codes for edit errors. Journal of
the ACM, 69(6):1–39, 2022.

[CN88] Imre Csiszár and Prakash Narayan. The capacity of the arbitrarily varying
channel revisited: Positivity, constraints. IEEE transactions on Information
Theory, 34(2):181–193, 1988.

[CPSV00] Graham Cormode, Mike Paterson, Süleyman Cenk Sahinalp, and Uzi Vishkin.
Communication complexity of document exchange. In Proceedings of the eleventh
annual ACM-SIAM symposium on Discrete algorithms, pages 197–206, 2000.

[CR20] Mahdi Cheraghchi and João Ribeiro. An overview of capacity results for synchro-
nization channels. IEEE Transactions on Information Theory, 67(6):3207–3232,
2020.

[DLVP96] Charles De La Vallee-Poussin. Recherches analytiques sur la théorie des nombres
premiers. Ann. Soc. Sc. Bruxelles, 1896.

[Dus18] Pierre Dusart. Explicit estimates of some functions over primes. The Ramanujan
Journal, 45:227–251, 2018.

[GH21] Venkatesan Guruswami and Johan H̊astad. Explicit two-deletion codes with
redundancy matching the existential bound. IEEE Transactions on Information
Theory, 67(10):6384–6394, 2021.

[GL20] Venkatesan Guruswami and Ray Li. Coding against deletions in oblivious and
online models. IEEE Transactions on Information Theory, 66(4):2352–2374,
2020.

[GS16] Venkatesan Guruswami and Adam Smith. Optimal rate code constructions for
computationally simple channels. Journal of the ACM (JACM), 63(4):1–37,
2016.

[GS18] Ryan Gabrys and Frederic Sala. Codes correcting two deletions. IEEE Trans-
actions on Information Theory, 65(2):965–974, 2018.

[Had96] Jacques Hadamard. Sur la distribution des zéros de la fonction zeta(s) et ses
conséquences arithmétiques. Bulletin de la Societé mathematique de France,
24:199–220, 1896.

[Hae19] Bernhard Haeupler. Optimal document exchange and new codes for insertions
and deletions. In 2019 IEEE 60th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 334–347. IEEE, 2019.

[Ham50] Richard W Hamming. Error detecting and error correcting codes. The Bell
system technical journal, 29(2):147–160, 1950.

24

[HER18] Serge Kas Hanna and Salim El Rouayheb. Guess & check codes for deletions,
insertions, and synchronization. IEEE Transactions on Information Theory,
65(1):3–15, 2018.

[HER19] Serge Kas Hanna and Salim El Rouayheb. List decoding of deletions using guess
& check codes. In 2019 IEEE International Symposium on Information Theory
(ISIT), pages 2374–2378. IEEE, 2019.

[Hoe94] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. The collected works of Wassily Hoeffding, pages 409–426, 1994.

[HS21] Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings and
codes for insertions and deletions—a survey. IEEE Transactions on Information
Theory, 67(6):3190–3206, 2021.

[HSS18] Bernhard Haeupler, Amirbehshad Shahrasbi, and Madhu Sudan. Synchroniza-
tion strings: List decoding for insertions and deletions. In 45th International
Colloquium on Automata, Languages, and Programming (ICALP 2018), pages
76–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2018.

[IMS05] Utku Irmak, Svilen Mihaylov, and Torsten Suel. Improved single-round pro-
tocols for remote file synchronization. In Proceedings IEEE 24th Annual Joint
Conference of the IEEE Computer and Communications Societies., volume 3,
pages 1665–1676. IEEE, 2005.

[Jow12] Hossein Jowhari. Efficient communication protocols for deciding edit distance.
In European Symposium on Algorithms, pages 648–658. Springer, 2012.

[KM13] Yashodhan Kanoria and Andrea Montanari. Optimal coding for the binary dele-
tion channel with small deletion probability. IEEE Transactions on Information
Theory, 59(10):6192–6219, 2013.

[KMS10] Adam Kalai, Michael Mitzenmacher, and Madhu Sudan. Tight asymptotic
bounds for the deletion channel with small deletion probabilities. In 2010 IEEE
International Symposium on Information Theory, pages 997–1001. IEEE, 2010.

[Lan08] Michael Langberg. Oblivious communication channels and their capacity. IEEE
Transactions on Information Theory, 54(1):424–429, 2008.

[Lev01] Vladimir I Levenshtein. Efficient reconstruction of sequences from their sub-
sequences or supersequences. Journal of Combinatorial Theory, Series A,
93(2):310–332, 2001.

[Lip94] Richard J Lipton. A new approach to information theory. In STACS 94: 11th
Annual Symposium on Theoretical Aspects of Computer Science Caen, France,
February 24–26, 1994 Proceedings 11, pages 699–708. Springer, 1994.

[LN98] Amos Lapidoth and Prakash Narayan. Reliable communication under channel
uncertainty. IEEE transactions on Information Theory, 44(6):2148–2177, 1998.

25

[MBT10] Hugues Mercier, Vijay K Bhargava, and Vahid Tarokh. A survey of error-
correcting codes for channels with symbol synchronization errors. IEEE Com-
munications Surveys & Tutorials, 12(1):87–96, 2010.

[Mit08] Michael Mitzenmacher. A survey of results for deletion channels and related
synchronization channels. In Joachim Gudmundsson, editor, Algorithm Theory
- SWAT 2008, 11th Scandinavian Workshop on Algorithm Theory, Gothenburg,
Sweden, July 2-4, 2008, Proceedings, volume 5124 of Lecture Notes in Computer
Science, pages 1–3. Springer, 2008.

[MPSW05] Silvio Micali, Chris Peikert, Madhu Sudan, and David A Wilson. Optimal error
correction against computationally bounded noise. In Theory of Cryptography:
Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA,
February 10-12, 2005. Proceedings 2, pages 1–16. Springer, 2005.

[MU17] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomiza-
tion and probabilistic techniques in algorithms and data analysis. Cambridge
university press, 2017.

[Orl91] Alon Orlitsky. Interactive communication: Balanced distributions, correlated
files, and average-case complexity. In FOCS, pages 228–238, 1991.

[PSW24] Francisco Pernice, Oscar Sprumont, and Mary Wootters. List-Decoding Ca-
pacity Implies Capacity on the q-ary Symmetric Channel, October 2024.
arXiv:2410.20020.

[SB20] Jin Sima and Jehoshua Bruck. On optimal k-deletion correcting codes. IEEE
Transactions on Information Theory, 67(6):3360–3375, 2020.

[SGB20] Jin Sima, Ryan Gabrys, and Jehoshua Bruck. Optimal systematic t-deletion
correcting codes. In 2020 IEEE International Symposium on Information Theory
(ISIT), pages 769–774. IEEE, 2020.

[Sha48] Claude E Shannon. A mathematical theory of communication. The Bell system
technical journal, 27(3):379–423, 1948.

[SKSY24] Omer Sabary, Han Mao Kiah, Paul H Siegel, and Eitan Yaakobi. Survey for a
decade of coding for dna storage. IEEE Transactions on Molecular, Biological,
and Multi-Scale Communications, 2024.

[SNT04] Torsten Suel, Patrick Noel, and Dimitre Trendafilov. Improved file synchroniza-
tion techniques for maintaining large replicated collections over slow networks. In
Proceedings. 20th International Conference on Data Engineering, pages 153–164.
IEEE, 2004.

[SRB19] Jin Sima, Netanel Raviv, and Jehoshua Bruck. Two deletion correcting codes
from indicator vectors. IEEE transactions on information theory, 66(4):2375–
2391, 2019.

26

[SS21a] Ronen Shaltiel and Jad Silbak. Explicit list-decodable codes with optimal rate
for computationally bounded channels. computational complexity, 30:1–70, 2021.

[SS21b] Ronen Shaltiel and Jad Silbak. Explicit uniquely decodable codes for space
bounded channels that achieve list-decoding capacity. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, pages 1516–1526,
2021.

[SS22] Ronen Shaltiel and Jad Silbak. Error correcting codes that achieve bsc capacity
against channels that are poly-size circuits. In 2022 IEEE 63rd Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 13–23. IEEE, 2022.

[SS24] Ronen Shaltiel and Jad Silbak. Explicit codes for poly-size circuits and functions
that are hard to sample on low entropy distributions. In Proceedings of the 56th
Annual ACM Symposium on Theory of Computing, pages 2028–2038, 2024.

[VT65] RR Varshamov and GM Tenengolts. Codes which correct single asymmetric
errors (in russian). Automatika i Telemkhanika, 161(3):288–292, 1965.

8 Appendix

8.1 Proof of Lemma 3.4

To prove Lemma 3.4, we use (in a black-box fashion) the following deterministic document
exchange protocol, which achieves the optimal hash size and polynomial decoding time.

Theorem 8.1 ([CJLW22]). There exists a deterministic document exchange protocol for t
deletions with hash size O(t log n) and encoding and decoding time poly n, where the exponent
in the polynomial is independent of t. There also exists a systematic adversarial t-deletion
code with redundancy O(t log n) and encoding and decoding time poly n, where the exponent
in the polynomial is independent of t.

We now prove Lemma 3.4 which is restated for convenience.

Lemma 3.4. [Randomized document exchange is equivalent to systematic oblivious deletions]
The following hold:

1. Suppose we have a systematic oblivious t-deletion code with n message bits, r redun-
dancy bits, encoding time TE, and decoding time TD. Then we can construct in O(n)
time a randomized document exchange protocol with length n, hash length r, distance
t, error ε, encoding time TE +O(n), and decoding time TD +O(n).

2. Suppose we have a randomized document exchange protocol with length n, hash length
r, distance t, error ε, encoding time TE, and decoding time TD. Then we can construct
in O(n) time a systematic oblivious t-deletion code with n message bits, r+O(t log(r))
redundancy bits, encoding time TE+O(n+poly r), and decoding time TD+O(n+poly r).

27

Proof. For the first part, suppose we have a systematic oblivious t-deletion code with error
ε with encoding Enc(x) = x ◦ h(x) for some hash h : {0, 1}n → {0, 1}r and decoder Dec :
{0, 1}n+r−t → {0, 1}n. Let Dec′ : {0, 1}n−t × {0, 1}r be the decoder Dec′(x, h) = Dec(x ◦ h).
By definition, (h,Dec′) is a randomized document exchange protocol with length n, distance
t, hash length t, and error ε.

Now suppose we have a randomized document exchange protocol with length n, hash
h : {0, 1}n → {0, 1}r of length r, distance t, error ε, and decoder Dech : {0, 1}n−t×{0, 1}r →
{0, 1}n. Let Enc0 : {0, 1}r → {0, 1}r+g(r,t) and Dec0 : {0, 1}r+g(r,t)−t → {0, 1}r be the
encoding and decoding functions, respectively, for the deletion code given by Theorem 8.1,
where g(r, t) ≤ O(t log r) and the encoding and decoding functions running in poly r time
(the exponent in the polynomial is independent of t). We define our oblivious deletion code’s
encoding and decoding functions as follows.

Encoding. Let the encoding for our t oblivious deletion code Enc : {0, 1}n → {0, 1}n+r+g(r,t)

be defined as Enc(m) = m ◦ Enc0(h(m)).

Decoding. Suppose that z is a subsequence of m ◦Enc0(h) of length n+ r+ g(r, t)− t (if
it is a longer subsequence, apply t deletions arbitrarily).

• Let z0 be the first n− t bits of z, and let z1 be the last r + g(r, t)− t bits of z.

• Compute Dech(z0,Dec0(z1)).

Correctness. Fix a deletion pattern τ and a message m. Again, let z0 be the first n−t bits
of z, and let z1 be the last r + g(r, t)− t bits of z. It’s easy to see that z0 is a subsequence
of m and z1 is a subsequence of Enc0(h(m)). Over the randomness of the encoder, m is
fixed, so z0 is fixed for a fixed τ . Since (Enc0,Dec0) corrects t adversarial deletions, we know
that the Dec0(z1) = h(m). Further, since (h,Dech) gives a randomized document exchange
protocol, Dech(z0, h(m)) returns m with probability at least 1− ε, as desired.

Runtime. Encoder Enc0 and decoder Dec0 runs in poly r time (because we chose the code
from [CJLW22]), hash h runs in TE time, and Dech runs in TD time, so the total encoding
time is TE +O(n) + poly r and decoding time is TD +O(n) + poly r.

8.2 Proof of Theorem 4.4

As discussed above, Theorem 4.4 is merely a reformulation of [KMS10, Theorem 2.2]. Thus,
for completeness, we reproduce their original proof here, altering only the parameters slightly.

Here, we will define a deletion pattern τ ∈ [n] that represents t deletions to be the
set of indices that are not deleted. The set of all t-deletion patterns is denoted by Pt,n =
{{a1, a2, . . . , an−t} | a1 < a2 < · · · < an−t}. For a string x ∈ {0, 1}n, τ(x) denotes x after
applying the deletion pattern to it. We abuse notation and denote by τ the set of indices
that are not affected by the deletion pattern and also the function that applies the deletions.

The first definition presents a distance function between two deletion patterns.

28

Definition 8.2. Let τ = {a1, . . . , an−t} and τ ′ = {b1, . . . , bn−t} be two t-deletion patterns.
Denote by ∆(τ, τ ′), the number of disagreements between τ and τ ′:

∆(τ, τ ′) = |{i | ai ̸= bi}|

Next, we give the definition of an (ℓ, t)-bad string. This is a string in {0, 1}n for which
there are two “ℓ-far apart” deletion patterns τ, τ ′ such that τ(x) = τ ′(x). Formally,

Definition 8.3. Let ℓ ≥ 1. A string x ∈ {0, 1}n is (ℓ, t)-bad if there are two distinct
t-deletion patterns such that τ(x) = τ ′(x) and ∆(τ, τ ′) ≥ ℓ.

In [KMS10], the authors showed that the number of (ℓ, t) bad strings is not big. Specifi-
cally,

Lemma 8.4. [KMS10, Lemma 2.3] Let ℓ ≥ 1. There are at most
(
n
t

)2
2n−ℓ different (ℓ, t)-bad

strings of length n.

An important step in their proof was to bound for a given t-deletion pattern τ , how many
other t-deletion patterns are ℓ-close to it. Formally,

Lemma 8.5. [KMS10, Lemma 2.2] Let ℓ > 0 be an integer. For any t-deletion pattern τ ,
the number of t-deletion pattern τ ′ such that ∆(τ, τ ′) ≤ ℓ is at most

(ℓ+ 1)

(
2t+ ℓ+ 1

2t+ 1

)(
t+ ℓ

t

)
.

Another useful lemma that [KMS10] used was the following

Lemma 8.6. Let ρ be a joint distribution over S × T for finite sets S and T such that the
marginal distribution over S is uniform. Let g : T → S be a function. Then, Pr(a,b)∼ρ[g(b) =
a] ≤ |T |/|S|.

We are now ready to present the proof of Theorem 4.4. The theorem is restated for
convenience.

Theorem 4.4. [KMS10, Theorem 2.2, rephrased] Let n be a large enough integer. Let C
be a code with block length n that is a t-random deletion code in the average case with error
probability ε. Then, the redundancy of C is at least

log

(
n

t

)
+ t− log(3t)− log(2/(1− ε))−O(t log log(n)) .

Proof. Set ℓ = 3t log n. The number of (ℓ, t)-bad strings is at most(
n

t

)2

· 2n−3t logn ≤
(
nt

t!

)2

·
(
1

n

)3t

· 2n =
1

(t!)2
· 2

n

nt
,

where the inequality follows by using the upper bound
(
n
t

)
≤ nt/t!. Let C be the code

guaranteed by the theorem, and let A be the decoding algorithm of the code.

29

We will next define an algorithm G that gets as input τ(c) for some random codeword
c and random t-deletion pattern τ and outputs (c, τ) with nonnegligible probability. On
input s, G runs the decoder A on s and then returns G(s) = (A(s), τ ′) where τ ′ is the
lexicographically first deletion pattern for which s = τ ′(A(c)). Now, the probability that the
decoder A succeeds and that the codeword is not an (ℓ, t)-bad string is at least

(1− δ)− 2n

(t!)2 · nt
· 1

|C|
≥ 1− δ

2
.

Indeed, at the worst-case scenario, all the (ℓ, t)-bad strings are codewords. The inequality
above holds since otherwise we would have that |C| ≤ 2n

(t!)2·nt · 2
1−δ

which implies that the

redundancy of C ′ is at least t log n + 2 log(t!) − log(2/(1 − δ)) > log
(
n
t

)
+ t − log(3t) −

log(2/(1− δ)) for all t and so the claim holds.
Fix τ . Conditioned on c not being (ℓ, t)-bad, for all τ ′ such that τ ′(c) = τ(c), we have

that ∆(τ, τ ′) ≤ ℓ− 1. By Lemma 8.5, the number of such close patterns is at most

ℓ ·
(
2t+ ℓ

2t+ 1

)
·
(
t+ ℓ− 1

t

)
≤ ℓ ·

(
e · 2t+ ℓ

2t+ 1

)2t+1 (
e · t+ ℓ

t

)t

≤ ℓ ·
(
6ℓ

t

)3t+1

,

where the first inequality follows by the upper bound
(
n
t

)
≤ (en/t)t which holds for t < n/2

and by noting that ℓ > 2t. Now, since each deletion pattern is equally likely, the probability

that G(τ(c)) = (c, τ) is at least (1− δ)/(2α) where α = ℓ ·
(
6ℓ
t

)3t+1
.

Now, using Lemma 8.6 with the sets S = C × Pt,n and T = {0, 1}n−t, we get the

probability that g(τ(c)) = (c, τ) is at most 2n−t

|C|·(nt)
. Therefore, we have

2n−t

|C| ·
(
n
t

) ≥ 1− δ

2α

and by taking logarithm on both sides and rearranging terms, we find that

log(|C|) ≤ n− t− log

(
n

t

)
− log((1− δ)/2) + logα

and the claim follows by noting that log(α) = log(3t log n)+(3t+1) log(18 log n) = O(t log log n).

30

	Introduction
	Our results
	Related work
	Organization

	Technical Overview
	Preliminaries
	Equivalence to Randomized Document Exchange
	Concentration Inequalities
	Prime Number Theorem
	The code of belazzougui2015efficient

	Existential Result and Lower Bound
	Oblivious deletions -3mu Random deletions in the average-case
	Lower bound on the redundancy of oblivious deletion codes
	Random construction

	Explicit oblivious deletion codes with redundancy 2tn
	List decoding implies oblivious
	Randomized explicit oblivious and adversarial codes approaching the existential bound
	Randomized explicit: Oblivious with (t+1)n redundancy
	Randomized Explicit: Adversarial with (2t+1)n redundancy

	Appendix
	Proof of Lemma 3.4
	Proof of Theorem 4.4

