
Robust Gray Codes Approaching the Optimal Rate

Roni Con∗ Dorsa Fathollahi† Ryan Gabrys‡ Mary Wootters§ Eitan Yaakobi¶

July 10, 2024

Abstract

Robust Gray codes were introduced by (Lolck and Pagh, SODA 2024). Informally, a robust
Gray code is a (binary) Gray code G so that, given a noisy version of the encoding G(j) of an
integer j, one can recover ĵ that is close to j (with high probability over the noise). Such codes
have found applications in differential privacy.

In this work, we present near-optimal constructions of robust Gray codes. In more detail, we
construct a Gray code G of rate 1−H2(p)− ε that is efficiently encodable, and that is robust in
the following sense. Supposed that G(j) is passed through the binary symmetric channel BSCp

with cross-over probability p, to obtain x. We present an efficient decoding algorithm that,
given x, returns an estimate ĵ so that |j − ĵ| is small with high probability.

∗Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel, roni.con93@gmail.com.
†Department of Electrical Engineering, Stanford University, Stanford, CA, dorsafth@stanford.edu.
‡University of California San Diego, San Diego, CA, rgabrys@ucsd.edu.
§Department of Electrical Engineering, Stanford University, Stanford, CA, marykw@stanford.edu.
¶Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel,

yaakobi@cs.technion.ac.il

DF is partially supported by NSF grant CCF-2133154. The work of RG was partially supported by NSF Grant
CCF-2212437. MW is partially supported by NSF grants CCF-2133154 and CCF-2231157. The work of RC and EY
was supported by the European Union (DiDAX, 101115134). Views and opinions expressed are those of the author(s)
only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency.
Neither the European Union nor the granting authority can be held responsible for them.
Part of this work was done while the authors were visiting the Simons Institute for the Theory of Computing.

1

1 Introduction

A robust Gray code is a Gray code that is robust to noise. In more detail, a robust Gray code G of
length d is a map G : {0, . . . , N − 1} → {0, 1}d so that:

• G is a Gray code: For all j ∈ {0, . . . , N − 1}, ∆(G(j),G(j + 1)) = 1, where ∆ denotes the
Hamming distance.1

• G is robust to noise from the binary symmetric channel with cross-over probability p (BSCp),
for some p ∈ (0, 1/2): Let η ∼ Ber(p)d be a random noise vector. Then for any j ∈ {0, . . . , N−
1}, given G(j) ⊕ η, it should be possible to (efficiently) recover an estimate ĵ so that |j − ĵ|
is small, with high probability over η.

As with standard error-correcting codes, we define the rate of a robust Gray code G : {0, . . . , N −
1} → {0, 1}d by R = log2(N)

d . The goal is then to make the rate as high as possible while achieving
the above desiderata.

For intuition about the problem, consider two extreme examples. The first is the unary code of
length d = N . The unary code simply encodes an integer j as j ones followed by d−j zeros. It is not
hard to see that if some random noise is introduced (with p < 1/2), it is possible to approximately
identify j; it is the place where the bits go from being “mostly one” to “mostly zero.” However,
the rate of this code tends to zero very quickly; it has rate R = log2(d)/d. The second extreme
example is the classical Binary Reflected Code (BRC, see Definition 1). The BRC is a Gray code
with N = 2d and hence rate R = 1, as high as possible. However, the BRC is not at all robust.
For example, the encodings of 0 and N − 1 under the BRC differ by only a single bit, and more
generally changing the “most significant bit” (or any highly significant bit) can change the value
encoded by quite a lot. Our goal is something in between these extreme examples: A Gray code
with good rate (as close to 1 as possible), but also with good robustness. Geometrically, one can
think of this as a path that “fills up” as much of the Boolean cube {0, 1}d as possible, while not
getting too close to distant parts of itself too often.

Robust Gray codes were introduced by Lolck and Pagh in [LP24], motivated by applications to
differential privacy. While their particular application (to differentially private histograms) is a bit
involved, the basic idea is the following. In differential privacy, one adds noise to protect privacy,
while hoping to still be able to estimate useful quantities about the data. Adding continuous noise
(say, Laplace noise) to real values is standard, but it can be more practical to add noise from the
BSCp to binary vectors. This motivates a robust Gray code as a building block for differentially
private mechanisms: It is a way of encoding integer-valued data into binary vectors, so that the
original value can be estimated after noise from the BSCp is added.

The original paper of Lolck and Pagh introduced a construction of robust Gray codes that
transformed any binary error-correcting code C with rate R into a robust Gray code G with rate
Ω(R). They showed that if C had good performance on BSCp, then so did G; more precisely, given
G(j)⊕ η, their decoder produced an estimate ĵ so that

Pr
η

[|j − ĵ| ≥ t] ≤ exp(−Ω(t)) + exp(−Ω(d)) + O(Pfail(C)),

1The paper [LP24] also gives a more general definition, where the code should have low sensitivity, meaning that
|EncG(j)−EncG(j + 1)| is small; however, both their code and our code is a Gray code, so we specialize to that case
(in which the sensitivity is 1).

2

where Pfail(C) is the failure probability of C on the BSCp. However, the constant in the Ω(R) in the
rate in that work is at most 1/4, which means that it is impossible for the construction of [LP24]
to give a high-rate code, even if p is very small. The constant inside the term Ω(R) was improved
to approach 1/2 in [FW24].2

Our main result is a family of robust Gray codes that have rate approaching 1−H2(p) on the
BSCp, where H2(p) = −p log2(p) − (1 − p) log2(1 − p) is the binary entropy function. In fact, we
prove a more general result, which takes any binary linear code Cin of rate R, and transforms it into
a robust Gray code G with rate approaching R. This more general result is stated in Theorem 1
below; we instantiate it in Corollary 1 to achieve rate approaching 1−H2(p).

Theorem 1. Fix constants p ∈ (0, 1/2) and a sufficiently small ε > 0. Fix a constant R ∈ (0, 1).
Let d be sufficiently large, in terms of these constants. Then there is an n′ = Θ(log d) so that the
following holds. Suppose that there exists a binary linear [n′, k′]2 code Cin with rate k′/n′ = R so
that Cin has a decoding algorithm DecCin that has block failure probability on the BSCp that tends
to zero as n′ → ∞.3 Then there is a robust Gray code G : {0, 1, . . . N − 1} → Fd

2 and a decoding
algorithm DecG : Fd

2 → {0, 1, . . . N − 1} so that:

1. The rate of G is R− ε.

2. Fix j ∈ {0, 1, . . . N−1}, let η ∼ Ber(p)d be a random error vector, and let ĵ := DecG(G(j)⊕η),
where η ∼ Ber(p)d. Then

Pr
η

[|j − ĵ| ≥ t] ≤ exp(−Ω(t)) + exp

(
−Ω

(
d

log d

))
,

where the constants inside the Ω(·) notation depend on p, ε, and R.

3. The running time of G (the encoding algorithm) is Õ(d3) and the running time of DecG (the
decoding algorithm) is Õ(d2) where the Õ(·) notation hides logarithmic factors.

Remark 1 (The running time of DecCin). We note that the running time of DecCin does not appear
in Theorem 1. The reason is that for any code, the brute-force maximum-likelihood decoder runs
in time poly(n′) · 2k′ . In the proof of Theorem 1, we will choose k′ = log(n + 1) ≤ log d, which
implies that n′ = O(log d). Thus, the running time of DecCin is at most d · polylog(d), and this is
sufficiently small to obtain the bound on the running time of DecG in Theorem 1.

For the best quantitative results, we instantiate Theorem 1 by choosing Cin to be a binary code
that achieves capacity on the binary symmetric channel, for example, polar codes [Ari08, TV13,
GX14,HAU14,GRY20,BGN+22]; Reed-Muller codes [AS23,RP23]); or even a random linear code.
This yields the following corollary.

Corollary 1. Let p ∈ (0, 1/2), ϵ > 0 be sufficiently small, and fix positive integers N and d

sufficiently large, and with R := log2(N)
d = 1 − H2(p) − ϵ. Then there is an efficiently encodable

robust Gray code G : [N]→ Fd
2 of rate R, so that the following holds. There is a polynomial-time

algorithm DecG : Fd
2 → [N] so that for any j ∈ [N], for η ∼ Ber(p)d, ĵ = DecG(G(j)⊕ η) satisfies

Pr
η

[|j − ĵ| ≥ t] ≤ exp(−Ω(t)) + exp

(
−Ω

(
d

log d

))
.

2The work [FW24] is by a subset of the authors of the current paper; we view it as a preliminary version of this
work.

3See Definition 4 for a formal definition of the failure probability.

3

for any t ≥ 0.

We note that 1−H2(p) is the Shannon capacity for BSCp, which implies that the limiting rate
of 1−H2(p) in Corollary 1 is optimal in the following sense.

Observation 1 (Optimality of Corollary 1). Suppose that G : [N]→ {0, 1}d is a robust Gray code
with rate R = 1−H2(p) + θ for some constant θ > 0. Let η ∼ Ber(p)d for some p ∈ (0, 1/2). Then,
for any procedure that recovers ĵ from G(j)⊕ η and any t = Θ(1) and for sufficiently large N , we
have Prη[|j − ĵ| > t] ≥ 0.99.

Proof. Suppose that G is in the statement of the observation, but that Prη[|j− ĵ| > t] < 0.99. Then
one could use G to communicate with non-negligible failure probability on the BSCp as follows.
The sender will encode a message j ∈ {0, . . . , N − 1} as G(j) and send it over the channel. The
receiver sees G(j)⊕η and uses G’s decoding algorithm (possibly inefficiently) to recover ĵ. Then the
receiver returns j̃ chosen uniformly at random from the interval I = {ĵ− t, ĵ− t+ 1, . . . , ĵ + t}. The
success probability of this procedure will be at least 0.01 · 1

2t+1 . Indeed, with probability at least

0.01, we have that |j − ĵ| ≤ t and hence j ∈ I, and, if that occurs, then with probability at least
1/(2t + 1) we will have j̃ = j, as |I| = 2t + 1. However, the converse to Shannon’s channel coding
theorem implies that the success probability for any code with rate R can be at most exp(−Ωθ,p(d))
(see, e.g., [SK20, Theorem 1.5]). This is a contradiction for sufficiently large d when t = Θ(1) is a
constant (or even polynomial in d).

1.1 Related Work

As mentioned earlier, robust Gray codes were originally motivated by applications in differential
privacy, and have been used in that context; see [LP24, ALP21, ALS23, ACL+21] for more details
on the connection. Beyond the initial construction of [LP24], the only prior work we are aware of
is that of [FW24] mentioned above, which we build on in this paper. It is worth mentioning that
there exist non-binary codes based on the Chinese Remainder Theorem [XXW20,WX10] that have
nontrivial sensitivity, but in our work, we focus on binary codes.

Independent Work. While this paper was in preparation, it came to our attention that Gu-
ruswami and Wang have achieved similar results, but with different techniques [GW24]. In partic-
ular, their approach does not use code concatenation.

1.2 Technical Overview

Before diving into the details, we give an overview of our construction along with a discussion of
how our approach leverages (and also departs from) ideas presented in previous work. In [LP24],
the main idea was to transform a linear binary “Base” code CB with rate R into a robust gray
code CG with rate Ω(R). The technique used involves first concatenating four copies of a codeword
from CB, of which two are bit-wise negated, in addition to some padding bits to form a codeword
in an intermediate code, denoted W, that is eventually transformed into the code CG . Since each
codeword inW (and also CG) is composed of four copies of x ∈ CB, it is possible, even in the presence
of noise, to allow one of the copies of x to be unrecoverable and still be able to use majority logic
on the other three copies to determine the value of the encoded information.

4

In our preliminary version of this paper [FW24], we were able to use an ordering of W, itself
based on a Gray code, that allows us to construct each codeword in W using only two copies of
a given codeword from CB, establishing that the rate R/2 is achievable. Under this setup, the ith
codeword in W had the following format:

bi ◦ ci ◦ bi ◦ ci ◦ bi,

where ci ∈ CB and where the bi is a short padding sequence. However, it remained an open problem
to determine whether it is possible to develop a general technique that converts a base code CB of
rate R to a robust gray code whose rate also approaches R. In this work, we provide an affirmative
answer to the previous question. In order to develop such a technique, we rely on two simple ideas.
The first idea is to define our base code CB to be a concatenated coding scheme whose resulting
code has certain performance guarantees on the BSCp. The second idea has to do with the use
of the padding bits. Rather than place our padding bits bi in between different copies of ci ∈ CB
to constuct codewords from W, we will instead embed the markers bi at regularly spaced intervals
within ci. Both these ideas will be discussed in more details in the following exposition. The full
technical details of the construction are included in Section 2.

Before we get into a more detailed overview, we define the ingredients we will need. We require
two codes Cout and Cin that are compatible under a concatenated error-correcting code scheme,
meaning that the parameters are such that the concatenated code C = Cout ◦ Cin makes sense. We
will choose the outer code Cout ⊆ Fn

q to be high-rate linear [n, k]q code, which can correct a small
fraction of worst-case errors; and as in Corollary 1, we will choose the inner code Cin to be any
binary code that achieves capacity on the BSCp.

“Interpolating” between codewords of an intermediate code. We follow the same high-
level idea as in [LP24, FW24], in that we first construct an intermediate code W. The code W is
a binary code constructed from Cout and Cin, along with some bookkeeping information; we will
describe it in the next paragraph. We will define an ordering w0, w1, w2, . . . on the codewords of
W. Then we will create our final code G by “interpolating” between the codewords of W, in order.
We begin by defining G(0) = w0. Now, suppose that z ∈ [d] is the first location that w0 and w1

differ; we define G(1) by flipping that bit in w0. We continue in this way, flipping bits to interpolate
between w0 and w1, and then between w1 and w2, and so on. We will choose parameters so that
this will generate distinct encodings for each of our N codewords in the resulting Gray code.

Defining the intermediate code. While the high-level approach is similar to that in [LP24],
as discussed in the beginning of this section, the improvements come from the definition of the
intermediate code W. We define it formally in Definition 5, but here we give some intuition for
the construction. We begin with an ordering on the codewords c0, c1, . . . , c|Cout| of the concatenated

code C ⊆ Fn′n
2 . This ordering (formally defined in Section 2.2) has the property that to get from

the codeword ci−1 to the codeword ci, one must simply add one row of the generator matrix A of
C.

Now, to construct the ith codeword wi in W, we proceed as follows. Let bi ∈ {0, 1} be 0 if i is
even and 1 if i is odd, and let b⃗i denote the bit bi repeated many times.4 Because of our ordering

4The number of times it is repeated is B, the distance of the inner code. Since the inner code has short length, b⃗i
is also not very long, relative to n.

5

on C, the only information we need to describe how to transition from ci−1 to ci is the index of
which row of A we must add; call this index zi ∈ [kk′]. Let Lzi denote an encoding under the
repetition code of this information zi; since zi is short, Lzi can still be fairly short and also be
extremely robust against the BSCp. Consider a codeword ci ∈ Cout ◦ Cin. This codeword begins
with a codeword σi ∈ Cout, and has the form

ci = ci[1] ◦ ci[2] ◦ · · · ◦ ci[n],

where ◦ denotes concatenation and where for all m ∈ {1, . . . , n}, we have

ci[m] = Cin(σi[m]) ∈ Cin.

We will arrange these inner codewords ci[m] ∈ Cin along with the quantities Lzi and bi in the
following way:

wi = Lzi b⃗i ci[1] b⃗i ci[2] b⃗i ci[3] b⃗ib⃗i ci[n]b⃗i ci[n−1]ci[n−2]· · ·

That is, we alternate the inner codewords ci[m] with bursts of the bit bi, and then include Lzi

at the beginning.

Decoding the resulting robust Gray code. To see why we define the intermediate code like
we do, let us consider what a codeword G(j) of our robust Gray code looks like. Suppose that G(j)
was an interpolation between wi and wi+1. Thus, for some “crossover point” h ∈ [d], G(j) might
look like this:

G(j) = Lzi+1

b⃗i+1

ci+1[1]

ci+1[2] ci[2]

b⃗i ci[3] b⃗ib⃗i ci[n]b⃗i ci[n−1]ci[n−2]· · ·

h

That is, everything before the “crossover point” h has been changed from wi to wi+1. This picture
gives us some intuition for how we should decode G(j)⊕ η in order to obtain an estimate for j.

The high-level steps in this case would be:

• Identify the approximate location of h. Observe that the bit bi is the opposite of the
bit bi+1. Thus, with high probability, we can look at the chunks of G(j)⊕ η that contain the
b’s and choose a point where they appear to “switch over” as an approximation of h.

• Decode Cin. Next, on each chunk that is either ci+1[r] or ci[r], we run the decoder for Cin
to correctly decode most of them. This gives us correct estimates for most of the σi+1[r] or
σi[r].

6

• Recover a noisy version of σi ∈ Cout. Recall that Li+1 contains all the information
necessary to recover ci from ci+1 and vice versa. Thus, after decoding Li+1, we can convert
all of the σi+1[r]’s (at least, those which we have correctly recovered and which we have
correctly identified as belonging to wi+1 using our estimate of h) into σi[r] for all r ∈ [n].

• Decode Cout to obtain i. Given our noisy estimates of σi[r] for all r ∈ [n], we can now
run the decoding algorithm of Cout. Recall that Cout can handle a small fraction of worst-case
errors; we will show that indeed our estimates of σi[r] are incorrect for only a small fraction
of r’s. After correctly decoding, we can recover i.5

• Recover ĵ. Having correctly identified i and approximately identified h (with high proba-
bility), we can now estimate j, which is a function only of i and h.

Of course, there are many more details to be accounted for. First, one must of course work out
the probability of success of all of the above steps, and work out the parameters. Second, there
are several corner cases not captured in the picture above, depending on where the crossover point
h lands. In the rest of the paper, we tackle these details. In Section 2, we formally define our
construction; in Section 3 we state our decoding algorithm; and in Section 4 we analyze it and
prove Theorem 1.

2 Definitions and Construction

2.1 Notation and useful definitions

We begin with some notation. For two vectors x, y, we use ∆(x, y) to denote the Hamming distance
between x and y, and we use ∥x∥ to denote the Hamming weight of x (that is, the number of non-
zero coordinates). For an integer n, we use [n] to denote the set {1, . . . , n}. For two strings or
vectors, u, and v we denote by u ◦ v their concatenation. Throughout this paper, we shall move
freely between representation of vectors as strings and vice versa. For a string u, we define prefm(u)
to be the prefix of u of length m and similarly suffm(u) will denote the last m symbols of u. For
a vector v and an integer i ≥ 1, we typically use v[i] to denote the ith entry of v; one exception,
defined formally below, is that for a codeword c in the concatenated code Cout ◦Cin and for m ∈ [n],
c[m] ∈ Cin refers to the mth inner codeword in c.

We will use the following versions of the Chernoff/Heoffding bounds.

Lemma 1 (Multiplicative Chernoff bound; see, e.g., [MU17]). Suppose X1, . . . , Xn are independent
identically distributed random variables taking values in {0, 1}. Let X =

∑n
i=1Xi and µ = E[X].

Then, for any 0 < α < 1:

Pr[X > (1 + α)µ] < e−
µα2

3

and

Pr[X < (1− α)µ] < e−
µα2

2

Lemma 2 (Hoeffding’s Inequality; see, e.g., [MU17]). Suppose X1, . . . , Xn are independent random
variables (not necessarily identically distributed) taking values in ±1. Let X =

∑n
i=1Xi and

µ = E[X]. Then for any t ≥ 0,

Pr[|X − µ| ≥ t] ≤ 2 exp(−t2/2n).
5In order to recover i efficiently, we leverage the particular ordering that we used on the codewords of Cout.

7

Gray codes were introduced in [Gra53] (see also, e.g., [Knu11]) which also defined a particular
Gray code called the binary reflected code. We will use this Gray code to order the codewords in
one of our ingredient codes.

Definition 1 (Binary Reflected Code, [Gra53]). Let k be a positive integer. The Binary Re-
flected Code (BRC) is a map Rk : {0, . . . , 2k − 1} → Fk

2 defined recursively as follows.

1. For k = 1, R1(0) = 0 and R1(1) = 1.

2. For k > 1, for any i ∈ {0, . . . , 2k − 1},

Rk(i) =

{
Rk−1(i) ◦ 0 i < 2k−1

Rk−1(2
k − i− 1) ◦ 1 i ≥ 2k−1

Before continuing, we introduce some a few more definitions related to the BRC.

Definition 2. For i ∈ {1, 2, . . . , 2k − 1}, let zi be the unique index where

Rk(i)[zi] ̸= Rk(i− 1)[zi].

Let Nk(z, i) be the number of t ∈ {0, 1, . . . , i} so that zt = z.

That is, the value zi is the index on which the ith codeword in the BRC differs from the previous
codeword; equivalently, zi is the integer for which Rk(i) = Rk(i− 1) + ezi where ezi is the zith unit
vector. Nk(z, i) counts the number of codewords among {Rk(0), . . . ,Rk(i)} that differ from the
previous codeword in the zth index. We give an example of all of this notation below in Example 1.

Example 1. To illustrate Definitions 1 and 2, we give an example for k = 1, 2, 3. For k = 1, we
have:

i 0 1

R1(i) 0 1

For k = 2, we have:

i 0 1 2 3

R2(i)[0] 0 1 1 0
R2(i)[1] 0 0 1 1

For k = 3, we have:

i 0 1 2 3 4 5 6 7

R3(i)[0] 0 1 1 0 0 1 1 0
R3(i)[1] 0 0 1 1 1 1 0 0
R3(i)[2] 0 0 0 0 1 1 1 1

The pattern is that in order to obtain the table for Rk, we take the table for Rk−1, and repeat it
two times, first forwards and then backwards; then we add 0 ◦ 1 as the final row.

Next we give some examples of zi and Nk. For k = 3, we have the following values of zi:

8

i 1 2 3 4 5 6 7

zi 0 1 0 2 0 1 0

That is, R3(0) = (0, 0, 0) and R3(1) = (1, 0, 0) differ in the z1 = 0 component, R3(1) = (1, 0, 0) and
R3(2) = (1, 1, 0) differ in the z2 = 1 component, and so on. Then, for example, Nk=3(z = 0, i =
3) = 2, as there are two values of t ≤ i (names, t − 1 and t = 3) so that zt = 2. As a few more
examples, we have Nk=3(z = 1, i = 3) = 1, and Nk=3(z = 0, i = 7) = 4.

Below in Observation 2, we state a few useful facts about the zi and Nk(z, i). Briefly, the
reason these facts are useful for us is that we will use Rk to create the ordering on the codewords
ci ∈ C and wi ∈ W discussed in the introduction. Understanding zi and Nk(z, i) will be useful for
efficiently computing indices in this ordering.

Observation 2 (Bit Flip Sequence of BRC). For k ≥ 1, the following holds:

1. The index zi is equal to zero if and only if i is odd.

2. Nk(z, i) =
⌊
i+2z

2z+1

⌋
.

Proof. Let Zk = (z1, z2, . . . , z2k−1), where the zt’s are defined with respect to k, as in the statement
of the observation. We first observe that for any k ≥ 2,

Zk = Zk−1 ◦ (k − 1) ◦ Zk−1. (1)

Indeed, for the base case k = 2, this follows by inspection: We have Z1 = 0, and Z2 = 0, 1, 0. For

k > 2, it is clear from construction that Zk = Zk−1 ◦ (k − 1) ◦
←−−−
Zk−1, where the ←−· notation means

that the sequence is reversed. However, by induction, Zk−1 is symmetric, so we have
←−−−
Zk−1 = Zk−1.

This establishes the statement for k.
Given (1), Item 1 follows immediately by induction.
For Item 2, we proceed by induction on k. As a base case, when k = 1, the statement follows

by inspection. Now suppose that k > 2 and that the statement holds for k − 1.

Case 1: i < 2k−1. First suppose that i < 2k−1. Then for any z < k − 1,

Nk(z, i) = Nk−1(z, i) =

⌊
i + 2z

2z+1

⌋
by induction, establishing the statement. Further, if z = k − 1 but i < 2k−1, we have

Nk(k − 1, i) = 0 =

⌊
i + 2k−1

2k

⌋
,

and the statement again follows.

Case 2: i ≥ 2k−1. Next, we turn our attention to the case that i ≥ 2k−1. In this case, by (1), we
have

Nk(z, i) = Nk−1(z, 2
k−1 − 1) + 1[z = (k − 1)] +Nk−1(z, i− 2k−1).

9

If z < k − 1, then by induction we have

Nk(z, i) =

⌊
2k−1 − 1 + 2z

2z+1

⌋
+

⌊
i− 2k−1 + 2z

2z+1

⌋
.

Suppose that i = 2k−1 + ∆1 · 2z+1 + ∆2, where ∆2 < 2z+1. Then we can write the above as:

Nk(z, i) =

⌊
2k−z−2 +

1

2
− 1

2z+1

⌋
+

⌊
∆1 +

1

2
+

∆2

2z+1

⌋
= 2k−z−2 + ∆1 +

⌊
1

2
+

∆2

2z+1

⌋
,

where above we have used the fact that z < k − 1 and so 2k−z−2 is an integer. On the other hand,
we have ⌊

i + 2z

2z+1

⌋
=

⌊
2k−z−2 + ∆1 +

∆2

2z+1
+

1

2

⌋
= 2k−z−2 + ∆1 +

⌊
1

2
+

∆2

2z+1

⌋
,

which is the same. Thus, we conclude that if z < k − 1,

Nk(z, i) =

⌊
i + 2z

2z+1

⌋
,

as desired. On the other hand, if z = k − 1, then by (1) we have Nk(k − 1, i) = 1 for all i ≥ 2k−1,

and indeed this is equal to
⌊
i+2k−1

2k

⌋
. This completes the proof of Item 2.

Definition 3 (Unary code). The Unary code U ⊆ Fℓ
2 is defined as the image of the encoding map

EncU : {0, . . . , ℓ} → Fℓ
2 given by EncU (j) := 1j ◦ 0ℓ−j . The decoding map DecU : Fℓ

2 → {0, . . . , ℓ} is
given by

DecU (x) = argminj∈{0,...,ℓ}∆(x,EncU (j)).

Similarly, we define the complementary Unary code Ucomp ⊆ Fℓ
2 as the image of the encoding

map EncUcomp : {0, . . . , ℓ} → Fℓ
2 given by EncUcomp(j) := 0j ◦ 1ℓ−j . The decoding map DecUcomp :

Fℓ
2 → {0, . . . , ℓ} is given by

DecUcomp(x) = argminj∈{0,...,ℓ}∆(x,EncUcomp(j)).

Naively, the runtime complexity of DecU is O(ℓ2), as one would loop over ℓ values of j and
compute ∆(x,EncU (j)) for each. However, this decoder can be implemented in time linear in ℓ,
which is our next lemma.

Lemma 3. Let U be the unary code of length ℓ. Then DecU and DecUcomp can be implemented to
run in time O(ℓ).

Proof. We prove the statement just for DecU ; it is the same for DecUcomp . For a fixed j, by definition
we have EncU (j) = 1j0ℓ−j . To compute ∆(x,EncU (j)) for each j, one needs to count the number
of zeros before index j and the number of ones after index j. We can express this as follows:

∆(x,EncU (j)) =

ℓ∑
m=1

1[x[m] = EncU (j)] =

j∑
m=0

1[x[m] = 0] +

ℓ∑
m=j+1

1[x[m] = 1] (2)

10

Define the array T [m] to count the number of zeros up to index m:

T [m] =

{
1[x[m] = 0] m = 1

T [m− 1] + 1[x[m] = 0] m > 1

This array can be computed in time O(ℓ). Using T [m], we can rewrite ∆(x,EncU (j)) as:

∆(x,EncU (j)) = T [j] + (ℓ− j − (T [ℓ]− T [j]))) (3)

Thus, given the array T [m], the distance for each j can be computed in O(1) time. Therefore, the
overall time complexity of DecU is O(ℓ).

Next, we define the failure probability of a binary code.

Definition 4. Fix p ∈ (0, 1). Let C ⊆ Fn
2 be a code with message length k and encoding and

decoding maps DecC and EncC respectively. The probability of failure of C is

Pfail(C) = max
v∈Fk

2

Pr
ηp

[DecC(EncC(v) + ηp) ̸= v],

where the probability is over a noise vector ηp ∈ Fn
2 with ηp ∼ Ber(p)n.

Note that this definition is simply the block error probability of the binary code C one the
binary symmetric channel with parameter p.

2.2 Base code

Ingredients. We begin by fixing an outer code and an inner code. Let q = 2k
′

for some integer
k′. Let Cout be an [n, k]q linear code over Fq. Denote the rate of Cout by Rout ∈ (0, 1) and the
relative distance of Cout by δout ∈ (0, 1). Note that it is possible to decode Cout from e errors and t
erasures as long as 2e + t < δoutn. Let DecCout : (Fq ∪ ⊥)n → Fk

q denote the decoding map for Cout
that can do this, where ⊥ represents an erasure. (Later, we will choose Cout to be a Reed–Solomon
code, so in particular DecCout can be implemented efficiently).

Let Cin ⊆ Fn′
2 be a linear code of dimension k′. We will abuse notation and use Cin : {0, 1}k′ →

{0, 1}n′
to also denote its encoding map. Let Rin = k′

n′ denote the rate of Cin. Let C = Cout ◦ Cin
denote the concatenation of Cout and Cin, so that

C = {(Cin (σ[1]) , . . . , Cin (σ[n])) : σ ∈ Cout} ⊆ Fn·n′
2 ,

where above we identify Fk′
2 with Fq = F2k′ in the natural (F2-linear) way. Let A ∈ Fk′·k×n′·n

2 be
the generator matrix of C. Note that A can be obtained efficiently from the generator matrices of
Cin and Cout.

Throughout the paper, we shall use σ to denote an outer codeword and c to denote a codeword
in the concatenated code C. To ease notation, for c ∈ C, we will denote c[m] := Cin(σ[m]) = c[(m−
1) ·n′ + 1 : m ·n′] ∈ Fn′

2 . Namely, c[m] is the mth inner codeword inside the concatenated codeword
c. Similarly, for a row a of the generator matrix A, we will let a[m] := a[(m − 1) · n′ + 1 : m · n′].
(Note that for any other string in the paper, when we write x[m], we mean the mth bit in the string
x; we use this notation only for codewords c in the concatenated code C = Cout ◦ Cin, including the
rows of A).

11

Ordering the base code. We define an order on the codewords c0, c1, . . . , c2kk′−1 of our con-
catenated code C. Define c0 to be the zero codeword. For i > 0, The ith codeword in C is defined
by

ci = ATRk′k(i). (4)

As Rk′k is a binary reflected code, Rk′k(i−1) and Rk′k(i) differ in exactly one index. Let zi denote
this index, so we have

Rk′k(i− 1)[zi] ̸= Rk′k(i)[zi] .

Denote by am the mth row of A. Then, for every i ∈ {1, 2, . . . , 2kk′ − 1}, we have

ci = ci−1 ⊕ azi . (5)

This is clearly an ordering of all the codewords of C. Indeed, Rk′k is a bijection and A is full-
rank, so as i varies in {0, . . . , 2kk′ − 1}, ci = ATRk′k(i) varies over all the codewords in C, hitting
each c ∈ C exactly once.

Note that the ordering of C immediately implies an ordering of Cout. Indeed, by the concatena-
tion process, there is a bijection between C and Cout. Thus, the ith codeword ci in our concatenated
codeword defines also the ith codeword in the outer code. We let σi ∈ Cout denote this outer
codeword. That is,

ci = σi ◦ Cin = (Cin(σi[1]), . . . , Cin(σi[n])).

2.3 Intermediate Code

Next, we explain how to get our intermediate codeW from our base codes Cout, Cin, and C = Cout◦Cin.

Encoding the generator matrix row difference. Recall that the difference of every two
consecutive codewords is a row of the generator matrix A, namely, ci − ci−1 = azi . In the ith
codeword of the intermediate code W, we will include zi, encoded with a repetition code that
repeats each bit of L/ log(kk′) times. We shall explicitly state the value of L when we prove
Theorem 1 and choose the parameters of our scheme. Since zi can be represented using log(kk′)

bits, we shall encode zi using the map6 L : Flog(kk′)
2 → FL

2 which simply performs repetition encoding
described above, to obtain

Lzi = L(zi) .

Construction of W. Now, we describe how to generate our intermediate codeW. Informally, to
get the ith codeword wi ∈ W, we take the ith codeword ci ∈ C; add Lzi at the beginning; and then
break up c by including short strings of repeated bits in between each inner codeword ci[m] ∈ Cin.
Formally, we have the following definition.

Definition 5. Let B be an integer that will be chosen later. Let d := n′n + B(n + 1) + L. The
intermediate code W, along with its ordering, is defined as follows. For each i ∈ {0, . . . , qk − 1},
define wi ∈ {0, 1}d by the equation

wi =

{
Lzi ◦ 0B ◦ ci[1] ◦ 0B ◦ · · · ◦ 0B ◦ ci[n] ◦ 0B if i is even

Lzi ◦ 1B ◦ ci[1] ◦ 1B ◦ · · · ◦ 1B ◦ ci[n] ◦ 1B if i is odd
(6)

6Note that log(kk′) might not be an integer. Going forward, we will drop floors and ceilings in order to ease
notation and the analysis. We note that the loss in the rate due to these roundings is negligible and does not affect
the asymptotic results.

12

where ci is the ith codeword in C, and where we recall that ci[m] = Cin(σi[m]) denotes the mth
inner codeword in ci. Finally, we define W ⊆ Fd

2 by

W = {wi : i ∈ {0, 1, . . . , qk − 1}}.

Note that W has the natural ordering w0, w1, . . . , wqk−1.

2.4 The Final Code

To create our robust Gray code G, given any two consecutive codewords in W, we inject extra
codewords between them to create G. Before we formally define this, we begin with some notation.

Definition 6 (The parameters ri, hi,j , j̄). Let W ⊆ {0, 1}d be a code defined as in Definition
5. For each i ∈ {0, . . . , qk − 1}, define ri =

∑i
ℓ=1 ∆(wℓ−1, wℓ), and let N = rqk−1. Also, for

i ∈ {0, . . . , qk − 1} and 1 ≤ j < ∆(wi, wi+1), let hi,j ∈ [d] be the jth index where codewords wi

and wi+1 differ. We will also define hi = (hi,1, hi,2, . . . , hi,∆(wi,wi+1)−1) ∈ [d]∆(wi,wi+1)−1 to be the
vector of all indices in which wi and wi+1 differ, in order, except for the last one.7 Finally, for
i ∈ {0, . . . , qk − 1} and for j ∈ [ri, ri+1), we will use the notation j̄ to denote j − ri. That is, j̄ is
the index of j in the block [ri, ri+1) in which j falls.

With this notation, we are ready to define our robust Gray code G.

Definition 7 (Definition of G). Define the zero’th codeword of G as g0 = w0. Fix j ∈ {1, . . . , N−1}.
If j = ri for some i, we define gj ∈ {0, 1}d by gj = wi. On the other hand, if j ∈ (ri, ri+1) for some
i, then we define gj ∈ {0, 1}d as

gj = prefhi,j̄
(wi+1) ◦ suffhi,j̄+1(wi). (7)

Finally, define G ⊆ {0, 1}d by G = {gj : j ∈ {0, . . . , N − 1}}, along with the encoding map
EncG : {0, . . . , N − 1} → {0, 1}d given by EncG(j) = gj .

Note that when j ∈ [ri, ri+1), the last bit that has been flipped to arrive at gj in the ordering
of G (that is, the “crossover point” alluded to in the introduction) is hi,j̄ . We make a few useful
observations about Definition 7. The first observation follows immediately from the definition.

Observation 3 (G is a Gray code). G is a Gray code. That is, for any j ∈ {0, . . . , N − 1}, we have
that ∆(gj , gj+1) = 1.

Next, we bound the rate of G.

Observation 4 (Rate of G). The rate of the robust Gray code G defined in Definition 7 is at least

RoutRin

1 + B
n′ · (1 + 1

n) + L
nn′

. (8)

7The reason we don’t include the last one is because of Definition 7 below, in which we flip bits one at a time
to move between the codewords gj of our robust Gray code G. In more detail, the reason is because once the last
differing bit has been flipped, gj will lie in [wi+1, wi+2), not [wi, wi+1).

13

Proof. Recall that Cin has rate Rin and Cout has rate Rout. Then the code W constructed as in
Definition 5 has rate

log qk

n′ · n + B(n + 1) + L
=

Routn · Rinn
′

n′ · n + B(n + 1) + L

=
RoutRin

1 + B
n′ · (1 + 1

n) + L
nn′

.

Thus, the rate of G is at least the above, given that G has more codewords than W but the same
length.

Fix i, and suppose that gj is obtained as an intermediate codeword between wi and wi+1. Then,
on the coordinates in which wi and wi+1 differ, gj will disagree with wi for a first chunk of them,
and agree with wi for the rest. We make this precise in the following observation.

Observation 5. Let gj ∈ G, and suppose that j ∈ (ri, ri+1) for some i ∈ {0, . . . , qk − 1}. Recall
from Definition 6 that hi ∈ [d]∆(wi,wi+1)−1 is the vector of positions on which wi and wi+1 differ
(except the last one). Then

(gj + wi)[hi] = EncU (j̄),

where U ⊂ {0, 1}∆(wi,wi+1)−1 is the unary code of length ∆(wi, wi+1) − 1. Above, (gj + wi)[hi]
denotes the restriction of the vector gi + wi ∈ Fd

2 to the indices that appear in the vector hi.
Further, for every m ≥ j̄, we have

(gj + wi)[hi[1 : m]] = EncU (j̄),

where U is the unary code of length m. That is, even if we take the first m values of hi, then as
long as m ≥ j̄, the restriction of (gj + wi) to these values match the unary encoding of j̄.

Proof. By definition, hi contains the indices on which wi and wi+1 differ, and also by definition, by
the time we have reached gj , the first j − ri = j̄ of these indices have been flipped from agreeing
with wi to agreeing with wi+1. Thus, if we add gj and wi (mod 2), we will get 1 on the first j − ri
indices and 0 on the on the rest. The “further” part follows immediately.

Our next objective is to show that Definition 7 actually defines an injective map. We begin
by providing some notation for different parts of the codeword gj ∈ G. For a string x, x[m : m′]
denotes the substring (xm, xm+1, . . . , xm′). For any x ∈ {0, 1}d define

• L̃ = x[1 : L],

• sm = x[L + (m− 1)(B + n′) + 1 : L + (m− 1)(B + n′) + B] for m ∈ [n + 1],

• c̃m = x[L + mB + (m− 1)n′ + 1 : L + m(B + n′)] for m ∈ [n],

As a result, any string x that is either a codeword or a corrupted codeword, has the following
format (see also Figure 1):

x = L̃ ◦ s1 ◦ c̃1 ◦ . . . c̃n ◦ sn+1 . (9)

We will call each of L̃i, si, ci a chunk. For a codeword gj ∈ G such that j ∈ [ri, ri+1) we will call a
chunk a full chunk if it is equal to its corresponding chunk in either wi or wi+1. This notation is
illustrated in Figure 1.

The following lemma shows that for each gj there is at most a single chunk that is not a full
chunk.

14

x = L̃ s1 c̃1 s2 c̃2 s3 c̃3

s n
+
1

sn c̃n

s n
−
1

c̃n−1c̃n−2· · ·

This is a
chunk.

So is
this.

etc.

gj = L̃ s1 c̃1 s2 s3 c̃3

s n
+
1

sn c̃n

s n
−
1

c̃n−1c̃n−2· · ·

hi,j̄

This is not a full chunk. All the other chunks are full chunks.

Figure 1: The notation used to break up vectors x ∈ {0, 1}d into chunks (top), and the distinction
between chunks and full chunks when x happens to be a codeword gj (bottom). Notice that for gj ,
if j ∈ [ri, ri+1) then we have, e.g., sm = bBi and c̃m = ci[m] or ci+1[m], whenever the corresponding
chunks are full chunks.

Lemma 4. Fix j ∈ {0, . . . , N − 1}. Suppose that i ∈ {0, . . . , qk − 1} is such that j ∈ [ri, ri+1), so
gj ∈ G can be written as gj = L̃ ◦ s1 ◦ c1 ◦ . . . cn ◦ sn+1 as above. Then at most one of the substrings
in S = {L̃, s1 . . . , sn+1, c1, . . . , cn} is not equal to the corresponding substring in wi or wi+1.

Proof. First, suppose that j = ri. Then in that case gj = wi and all of the substrings in S are
equal to their corresponding substring. Otherwise, j ∈ (ri, ri+1). In that case, j̄ ∈ [1, ri+1 − ri) =
[1,∆(wi, wi+1)). This means that hi,j̄ (the “crossover point” for gj) is defined, and indexes a
position in gj , and in particular in one of the sub-strings in S. Then other substrings strictly to
the left of hi,j̄ are equal to their corresponding substring in wi+1; and the ones strictly to the right
are equal to the corresponding substring in wi.

Next, we show that there are no “collisions” in G; that is, there are no j ̸= j′ so that gj = gj′ .

Lemma 5. Let G and EncG be as in Definition 7. Then EncG is injective.

Proof. Assume, for the sake of contradiction, that there are two distinct j, j′ ∈ {0, . . . , N − 1} such
that gj = gj′ . Without loss of generality assume that j′ > j. There are three scenarios possible.

1. Case 1: Both j and j′ are in the interval [ri, ri+1). Then we claim that gj [hi,j̄′] ̸= gj′ [hi,j̄′].
The reason is that gj [hi,j̄′] = wi[hi,j̄′] and gj′ [hi,j̄′] = wi+1[hi,j̄′]. This implies that wi[hi,j̄′] =
wi+1[hi,j̄′] which contradicts the definition of hi,j̄′ .

2. Case 2: j ∈ [ri−1, ri) and j′ ∈ [ri, ri+1). Then gj is an interpolation of wi−1 and wi, and gj′

is an interpolation of wi and wi+1. Denote

gj = L̃ ◦ s1 ◦ c̃1 ◦ . . . c̃n ◦ sn+1

15

and
gj′ = L̃′

1 ◦ s′1 ◦ c̃′1 ◦ . . . c̃′n ◦ s′n+1 .

If hi,j̄ does not fall into L̃ or sn+1 then (s1, . . . , sn, sn+1) cannot be equal to (s′1, . . . , s
′
n, s

′
n+1).

Indeed, assuming without loss of generality that i is even, then (s1, . . . , sn+1) = 0a1b where
both a and b are nonzero, while (s′1, . . . , s

′
n, s

′
n+1) is of the form 1a

′
0b

′
. An identical argument

shows that if hi+1,j̄′ does not fall into f ′
1 or s′n+1 then (s1, . . . , sn, sn+1) cannot be equal to

(s′1, . . . , s
′
n, s

′
n+1). We are left with the case where hi,j̄ falls in L̃ or sn+1 and hi+1,j̄′ falls in

f ′
1 or s′n+1. In this case, since the parities of i − 1 and i are different, the only possibility

to get equality between (s1, . . . , sn+1) and (s′1, . . . , s
′
n+1) is if hi,j̄ is in L̃ and hi+1,j̄′ falls

exactly on the last bit of s′n+1. This implies that (c̃1, . . . , c̃n)—which corresponds to the

outer codeword σi−1—and (c̃′1, . . . , c̃′n)—which corresponds to the outer codeword σi+1—are
equal, a contradiction of the fact that the codewords in our ordering of the outer code are all
distinct.

3. Case 3: j ∈ [ri, ri+1) and j′ ∈ [ri′ , ri′+1) where |i− i′| > 1. As before, denote

gj = L̃ ◦ s1 ◦ c̃1 ◦ . . . c̃n ◦ sn+1

and
gj′ = L̃′

1 ◦ s′1 ◦ c̃′1 ◦ . . . c̃′n ◦ s′n+1 .

By Lemma 4, only a single chunk in gj (resp. gj′) is not equal to the corresponding chuck
in wi or wi+1 (resp. wi′ or wi′+1). We shall consider several sub-cases depending on the
locations of hi,j̄ and hi′,j̄′ .

First, assume that hi,j̄ falls into sm ◦ c̃m and hi′,j̄′ into s′m′ ◦ c̃′m′ where m ̸= m′ ∈ [n]. Also,
assume without loss of generality that m′ > m. Note that since neither hi,j̄ nor hi′,j̄′ fall
in the last chunks (sn+1 and s′n+1, respectively), it must be that i and i′ have the same
parity; otherwise the chunks sn+1 and s′n+1 would disagree, contradicting our assumption

that gj = gj′ . Assume that (s1, . . . , sn+1) and (s′1, . . . , s
′
n+1) are of the form 1a0b and 1a

′
0b

′
,

respectively. Clearly, as hi,j̄ falls into sm ◦ c̃m and hi′,j̄′ into s′m′ ◦ c̃′m′ , and m′ > m, it must
be that a′ > a. We conclude that gj ̸= gj′ , a contradiction.

Now assume that both hi,j̄ and hi′,j̄′ fall into sm ◦ c̃m and s′m ◦ c̃′m, respectively. (Note that
the difference between this sub-case and the previous one is that hi,j̄ and hi′,j̄′ fall into chunks

with the same index m). In this case, since L̃ and f ′
1 in gj and gj′ are full chunks, it holds

that the tuple
(Lzi+1 , ci+1[1], . . . , ci+1[m− 1], ci[m + 1], . . . , ci[n])

is equal to
(Lzi′+1

, ci′+1[1], . . . , ci′+1[m− 1], ci′ [m + 1], . . . , ci′ [n]) .

Now, since Lzi+1 = Lzi′+1
, we have that ci+1 and ci′+1 are obtained by adding the same row

az of the generator matrix A, to ci and ci′ , respectively. Thus, for each r ≤ m − 1 we have
that ci[r] = ci′ [r] and in total,

(ci[1], . . . , ci[m− 1], ci[m + 1], . . . , ci[n]) = (ci′ [1], . . . , ci′ [m− 1], ci′ [m + 1], . . . , ci′ [n])

16

which contradicts the fact that i ̸= i′ and that the minimum distance of Cout satisfies δoutn > 1.

Finally, we consider the sub0case where hi,j̄ falls in L̃ or sn+1. In this case, if hi′,j̄′ also falls

in f ′
1 or s′n+1, then (c̃1, . . . , c̃n) and (c̃′1, . . . , c̃′n) correspond to two distinct outer codewords,

which implies that gj ̸= gj′ , contradicting our assumption that they are the same. If hi′,j̄′

doesn’t fall in f ′
1 or s′n+1, then it must fall into an s′m or c̃′m for some m ∈ [n]. In this case,

(s1, . . . , sn, sn+1) will be the all 1 or all 0 string but (s′1, . . . , s
′
n, s

′
n+1) clearly cannot be the

all 0 or 1 string since s′n+1 ̸= s′m.

Thus, in all cases we arrive at a contradiction, and this completes the proof.

3 Decoding Algorithm

In this section, we define the decoding algorithm. In the following paragraphs, we will give a high
level overview of the major steps in the decoding procedures. We denote the input to the algorithm
by x ∈ Fd

2, and we recall that x is of the following form (see also Figure 1):

x = L̃ ◦ s1 ◦ c̃1 ◦ . . . ◦ c̃n ◦ sn+1 .

Recall that x is a noisy version of some codeword of G; let us write x = gj ⊕ η for a noise vector
η ∈ Fd

2, so our objective is to return ĵ ≈ j. As usual, suppose that j ∈ [ri, ri+1), and define
j̄ = j − ri, so that hi,j̄ is the crossover point in the correct codeword gj .

Our primary decoding algorithm, DecG , is given in Algorithm 1. The first objective of the
decoding algorithm is to estimate the chunk in which the crossover point hi,j̄ occurs. We define
ℓ ∈ {0, . . . , n + 1} to be

ℓ =

0 if hi,j̄ falls in L̃

m if hi,j̄ falls in sm ◦ c̃m for m ∈ [n]

n + 1 if hi,j̄ falls in sn+1

. (10)

Intuitively speaking, ℓ will be the crossover point at the level of chunks. Algorithm 1 will estimate
ℓ, and we will denote this estimation by ℓ̂.

Next, Algorithm 1 decodes each chunk c̃m using the inner code’s decoding algorithm to obtain
an estimate σ̂[m] ∈ Fq. Then, based on the location of ℓ̂ and the decoded symbols σ̂[m], we either
invoke Algorithm 2 (get-estimate), or Algorithm 3 (get-estimate-boundary) in order to obtain
our final estimate ĵ.

In more detail, for an appropriate constant β ∈ (0, 1), we will show that with high probability,
ℓ cannot be more than βn “far” from ℓ̂. We break up both our algorithm and analysis into two
cases, depending on whether ℓ̂ lands in (βn, n − βn). If ℓ̂ ∈ (βn, n − βn), we say that ℓ̂ is in the
middle. In this case, we call Algorithm 2 to recover ĵ. If ℓ̂ ̸∈ (βn, n − βn), we say that ℓ̂ is in
the boundaries. In this case, we call Algorithm 3 to recover ĵ. We next describe Algorithm 2 and
Algorithm 3, and why we break things into these two cases.

Algorithm 2 (get-estimate) is called when ℓ̂ ∈ (βn, n−βn). The first thing it does is to update
our estimate σ̂—which corresponds to an interpolation between two codewords of Cout—to obtain
a version σ̂ that corresponds to only one codeword in Cout. To do this, it first decodes the first L

17

bits to get zi+1 and uses this to update σ̂ by:

σ̂[m] =

σ̂[m]− azi+1 [m] if m < ℓ̂s

⊥ if m ∈ [ℓ̂s, ℓ̂e]

σ̂[m] if m > ℓ̂e

.

where we use the ⊥ symbol to indicate an erasure. Above, ℓ̂s = ℓ̂− βn, ℓ̂e = ℓ̂+ βn and recall that
azi+1 [m] = azi+1 [(m − 1)n′ + 1 : mn′]. Also, above we have used the fact that azi+1 [m] ∈ Cin, and
thus corresponds to some element of Fq, so we treat azi+1 [m] as an element of Fq in the subtraction
above. Intuitively, what the algorithm is doing here is translating the elements of σ̂ that correspond
to ci+1 into elements that correspond to ci. Finally, Algorithm 2 uses Cout’s decoder on σ̂ ∈ Fn

q

to obtain î. Given î, it computes ĵ by taking into consideration how many bits were flipped from
wî[H] to get x[H], where H = {i | wî ̸= wî+1}.

Algorithm 3 (get-estimate-boundary) is invoked when ℓ̂ /∈ (βn, n−βn). The general strategy
in this algorithm is similar to that of Algorithm 2, but there are several differences. The main
reason for these differences is that if ℓ̂ is in the boundaries, ℓ̂ will only be “close” to ℓ modulo n.
To see intuitively why this should be true, consider two scenarios, one where j is all the way at
the end of the interval [ri, ri+1), and a second where j is all the way at the beginning of the next
interval [ri+1, ri+2). The j’s in these two scenarios are close to each other, and their corresponding
encodings under G are also close in Hamming distance. However, in the first scenario, ℓ is close
to n + 1, while in the second scenario, ℓ is close to 0. Thus, we should only expect to be able to
estimate ℓ modulo n, and it could be possible that, for example, ℓ̂ is close to zero while ℓ is close
to n.

Here is how we take this into account in Algorithm 3, relative to Algorithm 2 discussed above.
First, we define ℓ̂s and ℓ̂e slightly differently, taking them modulo n as per the intuition above (see
Figure 2). Second, Algorithm 3 sets σ̂i[m] differently. For m ∈ [1, ℓ̂s] ∪ [ℓ̂e, n] we set σ̂i[m] =⊥. A
crucial observation is that for every m ∈ [ℓ̂e, ℓ̂s], if ℓ̂ ≤ βn, then c̃m is a corrupted version of ci[m]
and if ℓ̂ ≥ n − βn then c̃m is a corrupted version of ci+1[m]. Since we could have either ℓ ≤ βn
or ℓ ≥ n − βn, we thus take both of these cases into account, and consider both ci and ci+1 as
possibilities. To this end, we compute two possible decodings of σ̂, and we then get two options
for ĵ, call them ĵ1 and ĵ2, by performing the same steps as in Algorithm 2 to each case. Then
Algorithm 3 sets ĵ to be the more likely of ĵ1 and ĵ2.

Finally, we discuss our last helper function, Algorithm 4, called compute-r. This helper function
is called in both Algorithms 2 and 3. Its job is to compute ri given i. While this seems like it
should be straightforward—after all, ri is defined in Definition 6 as a simple function of i—doing
this efficiently without storing a lookup table of size qk requires some subtlety. The key insight—and
the reason that we defined the order on C the way we did—is that from (5), we have

ci = ci−1 ⊕ azi ,

where we recall that zi is the index in which Rk(i) and Rk(i− 1) differ, and azi is the zi’th row of
the generator matrix A of C. To see why this matters, recall from Definition 6 that

ri =

i∑
t=1

∆(wt−1, wt). (11)

18

There are contributions to each ∆(wt−1, wt) from each of the chunks L̃, sm, and c̃m. Here, we
discuss just the contribution from the c̃m chunks, as this illustrates the main idea. Due to (5), this
contribution is

i∑
t=1

∆(σt−1 ◦ Cin, σt ◦ Cin) =

i∑
t=1

∥azt∥. (12)

We cannot afford to add up all of the terms in the sum individually, as i may be as large as qk.
However, instead we can compute the number of times that a particular row az appears in the sum
above (this is given by Observation 2), and add ∥az∥ that many times. As there are only k ·k′ such
rows, this can be done efficiently.

This wraps up our informal description the decoding algorithm DecG and its helper functions;
we refer the reader to the pseudocode for formal descriptions. In the next section, we present the
analysis of DecG .

Algorithm 1 DecG : Decoding algorithm for G
1: Input: x ∈ Fd

2

▷ Estimate location of broken chunk:
2: for m ∈ {1, . . . , n + 1} do
3: ŝm = Maj(sm)
4: end for
5: ŝ = (ŝ1, . . . , ŝn+1)
6: ℓ̂1 = DecU (ŝ)
7: ℓ̂2 = DecUcomp(ŝ)

8: ℓ̂ =

{
ℓ̂1 ∆(ŝ, 1ℓ̂10n+1−ℓ̂1)) < ∆(ŝ, 0ℓ̂21n+1−ℓ̂2)

ℓ̂2 else
▷ Decode inner code Cin:

9: for m ∈ {1, . . . , n} do
10: σ̂[m] = DecCin(c̃[m])
11: end for

▷ Estimate j:
12: if ℓ̂ ∈ (βn, n− βn) then
13: ĵ = get-estimate(x, σ̂, ℓ̂)
14: else
15: ĵ = get-estimate-boundary(x, σ̂, ℓ̂)
16: end if
17: Output: ĵ

19

Algorithm 2 get-estimate: Computing the final estimate of ĵ

Require: x ∈ Fd
2, σ̂ ∈ Fn

q , ℓ̂ ∈ {0, 1, . . . , n + 1}
▷ Calculate erasure interval:

1: ℓ̂s = ℓ̂− βn
2: ℓ̂e = ℓ̂ + βn

▷ Update σ̂, taking into account the estimate of the crossover point:
3: ẑ = DecL(L̃)
4: for m < ℓ̂s do
5: σ̂[m] = σ̂[m]− aẑ[m]

▷ aẑ[m] ∈ Fn′
2 corresponds to an elt. of Cin and hence of Fq. Here, we treat aẑ[m] ∈ Fq.

6: end for
7: for m ≥ ℓ̂s and m ≤ ℓ̂e do
8: σ̂[m] = ⊥ ▷ Set σ̂[m] to an erasure if m is close to ℓ̂.
9: end for

10: for m > ℓ̂e do
11: σ̂[m] = σ̂[m] ▷ Don’t update σ̂[m].
12: end for

▷ Decode outer code to obtain î:
13: î = DecCout(σ̂)

▷ Compute j̄ and final estimate ĵ:
14: H = {m |wî[m] ̸= wî+1[m]}
15: ˆ̄j = DecU (x[H]⊕ wî[H])

16: ĵ = compute-r(̂i) + ˆ̄j
17: return ĵ

20

Algorithm 3 get-estimate-boundary: Computing the final estimate of ĵ in the case where ℓ̂ lies
in the boundary

Require: x ∈ Fd
2, σ̂ ∈ Fn

q , ℓ̂ ∈ {0, 1, . . . , n + 1}
▷ Calculate erasure interval:

1: if ℓ̂ ≤ βn then
2: ℓ̂e = ℓ̂ + βn
3: ℓ̂s = n + 1 + (ℓ̂− βn)
4: else
5: ℓ̂e = ℓ̂ + βn− (n + 1)
6: ℓ̂s = ℓ̂− βn
7: end if

▷ Erase symbols too near the boundary:
8: for m ∈ [0, ℓ̂e] ∪ [ℓ̂s, n] do
9: σ̂[m] = ⊥

10: end for
▷ Decode outer code to obtain î:

11: î = DecCout(σ̂)
▷ Case 1: ℓ is in the beginning:

12: H = {m | wî[m] ̸= wî+1[m] and m < L + 2βn(n′ + B)}
13: ˆ̄j1 = DecU (x[H]⊕ wî[H])

14: ĵ1 = compute-r(̂i) + ˆ̄j1
▷ Case 2: ℓ is towards the end:

15: H = {m | wî[m] ̸= wî−1[m],m ≥ d− 2βn(n′ + B)}
16: ˆ̄j2 = DecUcomp(x[H]⊕ wî[H])

17: ĵ2 = compute-r(̂i)− ˆ̄j2
▷ Choose the most likely estimate:

18: ĵ = argminĵ∈{ĵ1,ĵ2}(∆(x,EncG(ĵ)))

19: return ĵ

Algorithm 4 compute-r: Compute ri, given i.

Input: i ∈ {0, . . . , 2k′k − 1}
r̂i = i · (n + 1) ·B
for z ∈ {0, . . . , k′k − 1} do

r̂i = r̂i + ⌊ i+2z

2z+1 ⌋
(
∥az∥+ 2L

log(kk′) · ∥bin(z)∥
)

▷ az is the z’th row of A

▷ bin(z) is the binary expansion of z
▷ ∥ · ∥ denote Hamming weight

end for
Return: r̂i

21

4 Analysis

In this section we analyze Algorithm 1, proving a few statements that will be useful for our final
proof of Theorem 1 in Section 5. We start by setting up a bit more notation. Throughout this
section, we assume that the codeword that was transmitted was gj = EncG(j) ∈ G, for some integer
j ∈ [ri, ri+1) for some i.

4.1 Running time of Algorithm 1

We begin by analyzing the running time of Algorithm 1. In particular, we prove the following
proposition.

Proposition 1. For a code D of length D, let TEncD(D) and TDecD(D) denote the running time of
D’s encoding map EncD and D’s decoding map DecD, respectively. Given the codes Cout, Cin and
our Gray code G defined in Definition 7, it holds that:

1. EncG runs in time

O
(
d2
)

+ O
(
TEncCout

(n) + n · TEncCin
(n′)

)
2. DecG , which is given by Algorithm 1, runs in time

O(n ·B) + O
(
n · TDecCin

(n′)
)

+ O
(
TDecCout

(n)
)

+ O(d) .

Proof. We start with the encoding of G, which consists of the following steps.

• Given an integer j, we need to compute the i for which j ∈ [ri, ri+1). Recall that given i,
compute-r computes ri. Thus, ind the corresponding i by performing binary search on the
domain i ∈ {0, . . . , 2kk′ − 1}, calling compute-r in each iteration. Thus, the complexity of
this step is O(kk′) times the time it takes to perform compute-r.

We are left with analyzing the complexity of compute-r. The loop inside it runs for kk′

iterations and in every iteration we perform a constant number of operations (multiplication,
addition, and division) on kk′-bit integers. Note also that ||az|| and ||bin(z)|| can be computed
in O(kk′). Now, as multiplication of two kk′-bit integers can be done in O(kk′ log(kk′))
time [HVDH21], the total running time of compute-r is O((kk′)2 · log(kk′)).

In total, the running time to find i given j is O((kk′)3 · log(kk′)) ≤ Õ(d3).

• Given i from the previous step, we encode i to ci by first computing the messageRkk′(i) ∈ Fkk′
2 .

This can be done by simply invoking the recursive definition given in Definition 1 which runs
in time O(kk′) = O(d). Then we encode the message Rkk′(i) with EncCout and EncCin to a
codeword ci ∈ Fnn′

2 . This can be performed in time O(TEncCout
(n) + n · TEncCin

(n′)). Thus,
the final complexity of this step is O(d) + O(TEncCout

(n) + n · TEncCin
(n′)).

• Given ci from the previous step, we next compute wi ∈ W. This involves computing zi
and encoding it with the repetition code to obtain Lzi = L(zi); and computing the “buffer”
sections sm. Adding the buffers and encoding zi clearly take time O(d). Computing zi from
i can be done in time O(d) as follows. We compute Rkk′(i − 1) in time O(d), and since we
already computed Rkk′(i − 1) in the previous step, we can identify zi by searching the only
bit that differs between Rkk′(i− 1) and Rkk′(i).

22

• At the end of the previous step, we have wi. We can repeat the process to obtain wi+1. Then
we may obtain gj in time O(d) from wi+1 by flipping j− ri bits of wi (namely, the first j− ri
bits on which wi and wi+1 differ).

Thus the overall running time of the encoder EncG is

Õ
(
d3
)

+ O
(
TEncCout

(n) + n · TEncCin
(n′)

)
We proceed to analyze the running time of the decoder DecG , given in Algorithm 1. We go line-
by-line through Algorithm 1.

1. In Line 3, we take the majority of B bits, for each m ∈ [n + 1]. This takes time O(nB).

2. In lines 6-8, we compute ℓ̂. This takes time O(n), as we apply DecU and DecUcomp once each
to a vector of length n + 1; and then compute two Hamming distances between vectors of
length n+ 1. By Lemma 3, the former takes time O(n), and the latter clearly also takes time
O(n).

3. In Lines 9-11, Algorithm 1 decodes n inner codewords. This takes time O(n · TDecCin
(n′)).

4. In Lines 13-15, Algorithm 1 calls either Algorithm 2 or Algorithm 3. The running time of
each of these includes:

• The time to update σ̂. In Algorithm 2, this includes time O(L) = O(d) to decode the
repetition code L to obtain ẑ; and then time O(nn′) = O(d) to perform the update. In
Algorithm 3, the only work is setting σ̂[m] = ⊥ for appropriate values of m, which runs
in time O(n) = O(d) as well.

• The time to decode σ̂ using DecCout . This takes TDecCout
(n) time.

• The time to decode the unary code U (once for Algorithm 2, twice for Algorithm 3). By
Lemma 3, this takes time O(d).

• The time to call compute-r (once for Algorithm 2, twice for Algorithm 3). This takes
time Õ(d2).

• Finally, Algorithm 3 picks whichever of the two estimates ĵ1 and ĵ2 is better. As written
in Algorithm 3, this requires computing EncG(ĵ1) and EncG(ĵ2), which naively would
include an O(d2) term in its running time as above. However, the only reason for
the O(d2) term is the time needed to find i given j. In this case, we already have
the relevant i (it is the î returned by DecCout), and so this step can be done in time
O(d) + O(TEncCout

(n) + n · TEncCin
(n′)) as well.

We note that several times throughout Algorithm 2 and Algorithm 3, the algorithm needs
access to wĩ for some value of ĩ; these can be computed in the same way as EncG(ĵ1)
above, and so are covered by the O(d) + O(TEncCout

(n) + n · TEncCin
(n′)) term.

Overall, the decoding complexity is

O(n ·B) + O
(
n · TDecCin

(n′)
)

+ O
(
TDecCout

(n)
)

+ O
(
TEncCout

(n) + n · TEncCin
(n′)

)
+ Õ(d2) .

23

4.2 Analyzing the failure probability of Algorithm 1

Our main result in this section says that the estimate ĵ returned by Algorithm 1 is close to j with
high probability.

Theorem 2. Fix a constant p ∈ (0, 1/2). Let q = 2k
′

for a large enough integer k′. Let Cout be an
[n, k]q linear code with relative distance δout that can decode efficiently from e errors and t erasures
as long as 2e + t < δoutn.

Let Cin be an [n′, k′]2 linear code and suppose that P Cin
fail = o(1), where the asymptotic notation

is as n′ →∞. Let G : {0, . . . , N − 1} → {0, 1}d be the Gray code defined in Definition 7 with Cout
as an outer code and Cin as an inner code. Suppose that the parameter L in Definition 7 satisfies
L = ω(log(kk′) log log(kk′)), and suppose that the parameter B in Definition 7 is an absolute
constant (independent of k, k′, n, n′, N). Let B, β, ξ > 0 be constants so that

2 exp(−CpB)) < β < 1/4, (13)

where Cp is a constant8 depending only on p; and

2(1 + ξ)P Cin
fail + 2β < δout . (14)

Let j ∈ {0, . . . , N − 1} and let gj = EncG(j). Let x ∈ {0, 1}d be the string x = gj ⊕ η where
η ∼ Ber(p)d (the result of transmitting gj through the BSCp). Let ĵ be the output of Algorithm 1
when given as input the string x. Then for sufficiently large t (relative to constants that depend
on the constants p,B, β, ξ above),

Pr
η

[|j − ĵ| > t] ≤ exp(−Ω(L/ log(kk′))) + exp(−Ω(n)) + exp(−Ω(t)). (15)

Above, we emphasize that the constants inside the Ω(·) notation in (15) may depend on the
constants p, β,B, ξ.

The rest of this section is devoted to the proof of Theorem 2. In each of the following sub-
sections, we analyze a different step of Algorithm 1, and show that it is successful with high
probability. Theorem 2 will follow by a union bound over each of these steps; the formal proof of
Theorem 2 is at the end of the section.

4.2.1 Estimating the location of the crossover

The purpose of the following claims is to show that, except with probability exp(−Ω(n)), Algo-
rithm 1 correctly identifies the interval in which the crossover point occurs. Recall the definition
of ℓ from (10). Our goal is to show that with high probability, the value ℓ̂ computed in Line 8 of
Algorithm 1 will be close to ℓ.

We start by a simple application of the Chernoff bound (given in Lemma 1) and show that the
probability that the majority decoding of a single chunk sm in Line 3 fails in exp(−Ω(B)) (assuming
that hi,j̄ didn’t fall in sm).

Claim 1. Let η ∼ Ber(p)B. Then there is some constant Cp > 0 so that Prη
[
Maj

(
1B ⊕ η

)
̸= 1
]

=
exp(−Cp ·B).

8The value of Cp is determined in the proof; see Claim 1.

24

n + 1

Case 1: ℓ̂ ∈ (βn, n− βn)

ℓ

ℓ̂ ℓ̂eℓ̂s

βn βn

Case 2: ℓ̂ ̸∈ (βn, n− βn)

ℓ

ℓ̂ ℓ̂e ℓ̂s

βn

Figure 2: Two cases for where ℓ̂ can land. As one case see in Case 2, it can be the case that ℓ is in
the end of the transmitted codeword whereas ℓ̂, our estimate of ℓ, is in the beginning.

Proof. The majority fails if at least half of the bits are changed to 0. The expected number of 0s
in 1B + η is p ·B. Thus, by Chernoff bound (Lemma 1), the probability that the majority fails can
be upper bounded by

exp

(
−
p ·B · (1

2p − 1)2

3

)
= exp(−CpB)

where Cp = p ·
(

1
2p − 1

)2
/3.

Our next focus is to show that ℓ̂ (computed in line 8 of Algorithm 1), is “close” to ℓ. The
next claim considers three possible scenarios depending on the location of ℓ̂. In the first scenario,
ℓ̂ ∈ (βn, n−βn) is “in the middle” of the codeword. In this case, we show that with high probability,
ℓ ∈ [ℓ̂s, ℓ̂e] where ℓ̂s = ℓ̂− βn and ℓ̂e = ℓ̂ + βn. The other two cases are that ℓ̂ /∈ (βn, n− βn) is “in
the boundary” of the codeword (with one case for the beginning and one for the end). Here, we
show that with high probability ℓ ∈ [0, ℓ̂e] ∪ [ℓ̂s, n] where ℓ̂e and ℓ̂s are defined according to lines
1-7 of Algorithm 3 (See also Figure 2). Formally, we have the following claim.

Claim 2. Assume the conditions of Theorem 2. Let ℓ̂ be the value obtained in line 8 of Algorithm
1. Define the bad event Eℓ̂ according to the following cases:

1. If ℓ̂ ∈ (βn, n− βn), then Eℓ̂ is the event that ℓ /∈ [ℓ̂s, ℓ̂e] where ℓ̂s = ℓ̂− βn and ℓ̂e = ℓ̂ + βn.

2. If ℓ̂ ≤ βn, then Eℓ̂ is the event that ℓ /∈ [0, ℓ̂e]∪[ℓ̂s, n] where ℓ̂e = ℓ̂+βn and ℓ̂s = n+1−(ℓ̂−βn).

3. If ℓ̂ ≥ n − βn, then Eℓ̂ is the event that ℓ /∈ [0, ℓ̂e] ∪ [ℓ̂s, n] where ℓ̂e = ℓ̂ + βn − (n + 1) and

ℓ̂s = ℓ̂− βn.

Then, the probability (over the choice of η ∼ Ber(p)d) that Eℓ̂ occurs is at most exp(−ΩB,β,p(n)).

25

Proof. We begin with Case 1, namely that ℓ̂ ∈ (βn, n−βn). If ℓ /∈ [ℓ̂s, ℓ̂e], then |ℓ− ℓ̂| > βn. Assume
without loss of generality that ℓ > ℓ̂. Let ŝ ∈ {0, 1}n+1 be the quantity computed in Algorithm 1,
and suppose that ℓ̂ = DecU (ŝ). (Note that ℓ̂ is either DecU (ŝ) or DecUcomp(ŝ); assume without loss of
generality that it is DecU (ŝ), and the other case follows by an identical argument.) By the definition
of the unary decoder, it must be that ∆(ŝ,EncU (ℓ̂)) ≤ ∆(ŝ,EncU (ℓ)). This implies that the number
of zeros in ŝ[ℓ̂ : ℓ] is greater than the number of ones in this interval. This means that at least βn/2
values in ŝ were decoded incorrectly by the majority decoder. By Claim 1, the probability that a
single value of ŝ was decoded incorrectly is exp(−CpB). Thus, the expected number of values that
are decoded incorrectly is exp(−CpB) · (n+ 1). By Lemma 1, as long as β/2 > exp(−CpB) (which

it is by assumption), the probability that ℓ /∈ [ℓ̂s, ℓ̂e] is at most exp(−Ω(n)), where the constant in
the Ω(·) depends on B, p and β.

Next, consider Case 2, namely that ℓ̂ ≤ βn and that ℓ /∈ [0, ℓ̂e] ∪ [ℓ̂s, n] where ℓ̂e = ℓ̂ + βn and
ℓ̂s = n+ 1− (ℓ̂− βn). Note that in this case it must be that ℓ > ℓ̂ and that |ℓ− ℓ̂| > βn. Following
the same arguments as in Case 1, we get again that the probability E occurs is exp(−Ω(n)), and
Case 3 follows in the same way.

Remark 2 (The meaning of “close”). We remark that in Cases 2 and 3 Claim 2 it can be the case
that ℓ and ℓ̂ are not close to each other, in the sense that |ℓ− ℓ̂| is much bigger than βn. This can
happen if ℓ ≤ βn, but ℓ̂ ≥ n − βn or vice versa, as depicted in Figure 2. However, if we consider
the values modulo n + 1, so that the interval [0, n + 1] “wraps around,” then ℓ̂ and ℓ are actually
close to one another. In this sense, Claim 2 says that ℓ and ℓ̂ will be “close” to each other with
high probability.

4.2.2 Decoding z

In this subsection, we are interested only in the case where ℓ̂ ∈ (βn, n− βn). This is because only
Algorithm 2 (not Algorithm 3), attempts to estimate z, and Algorithm 2 is only called when ℓ̂ is
in the middle.9 In this case, Algorithm 2 decodes the first L bits of x, which should contain the
information zi+1. The following claim shows that this decoding process succeeds with probability
exp(−Ω(L/ log(kk′))).

Claim 3. Assume the conditions of Theorem 2. Let Eẑ be the bad event that (a) ℓ̂ ∈ (βn, n−βn),
and that (b) the quantity ẑ computed on Line 3 of Algorithm 2 is incorrect, meaning that ẑ ̸= zi+1.
Suppose that the bad event Eℓ̂ defined in Claim 2 does not occur. Then, conditioned on that, the
probability that Eẑ occurs is at most

Pr
η

[Eẑ |Eℓ̂] ≤ exp(−Ω(L/ log(kk′))).

Proof. Clearly, if ℓ̂ /∈ (βn, n−βn) the claim trivially holds as the probability of Eẑ is 0. Assume that
ℓ̂ ∈ (βn, n− βn) and that Eℓ̂ did not occur. Recall that L(zi+1) simply duplicates each bit of zi+1

L/ log(kk′) times and that L̃ is a noisy version of L(zi+1). Let us write L̃ = L̃0◦ L̃1◦· · ·◦ L̃log(kk′)−1,

where each L̃m ∈ {0, 1}L/ log(kk
′). The decoding algorithm DecL then takes a majority vote of each

L̃m to recover the estimate ẑ. Thus, it fails if and only if there is some m ∈ [log(kk′)−1] so that L̃m

9Intuitively, the reason that Algorithm 3 does not need to estimate z is because when it is called, the cross-over
point is near the boundary. This means that the gj is already close to a codeword wi, and we do not need to
“translate” the symbols of σi into σi+1 or vice versa. Thus, estimating zi+1 is not necessary.

26

has more than half of its L/ log(kk′) bits flipped. By the Chernoff bound (Lemma 1), and since the
expectation of the number of bits that are flipped is p ·L/ log(kk′), the probability that this occurs
for a particular m most exp(−Ω(L/ log(kk′))). Applying the union bound over all log(kk′) values
of m, the probability that the decoding of L(zi+1) fails is at most log(kk′) · exp(−Ω(L/ log(kk′))) =
exp(−Ω(L/ log(kk′))).

4.2.3 Estimating i

In this subsection, we show that the estimate of î obtained in either Algorithm 2 or Algorithm 3
(depending on which was called by Algorithm 1) succeeds with high probability.

In more detail, î is computed either in Algorithm 2 or Algorithm 3 based on the location of
ℓ̂ (whether it is in the middle or in the boundary). The following claim shows that with high
probability, the estimate of î is correct, meaning that î = i if ℓ̂ is in the middle, and î is equal to
either i or i + 1 if ℓ̂ is in the boundary.

Claim 4. Assume the conditions of Theorem 2. Define the bad event Eî according to the following
cases

1. If ℓ̂ ∈ (βn, n− βn) then Eî is the event that î ̸= i after performing line 13 in Algorithm 2.

2. If ℓ̂ /∈ (βn, n− βn) then Eî is the event that after performing line 11 in Algorithm 3, either

• ℓ̂ ≤ βn and î ̸= i; or

• ℓ̂ ≥ n− βn and î ̸= i + 1.

Assume that neither Eℓ̂ nor Eẑ occurred. Then, conditioned on that, the probability that Eî
occurs is at most

Pr
η

[Eî |Eℓ̂, Eẑ] ≤ exp(−Ω(n)),

where the constant in the Ω(·) depends on p, ξ and β defined in (14).

Proof. Based on the location of ℓ̂, this claim considers the lines 4-13 in Algorithm 2 and lines 8-11
in Algorithm 3. We consider the two cases separately, and show that in each case, before î is
computed, σ̂ corresponds to a noisy version of σi or σi+1. Then we can invoke the guarantees of
DecCout to argue that we correctly return either i or i + 1.

1. ℓ̂ is in the middle, i.e., ℓ̂ ∈ (βn, n− βn).

Since we assume that Eℓ̂ did not occur, the quantity ℓ defined in (10) satisfies ℓ ∈ [ℓ̂s, ℓ̂e].

This implies that the chunks c̃m for m ∈ [1, ℓ̂s) are corrupted versions of the inner codewords
of ci+1[m],m ∈ [1, ℓ̂s]; and that the chunks c̃m for m ∈ (ℓ̂e, n] are corrupted versions of the
inner codewords of ci[m],m ∈ (ℓ̂e, n].

First, we argue that with high probability, the chunks c̃m are mostly correctly decoded to
the symbols σ̂[m] in Lines 9-11 in Algorithm 1, in the sense that with probability at least
exp(−Ω(n)) over the choice of η, after Line 11, at least a 1 − (1 + ξ) · P Cin

fail fraction of

m ∈ [1, ℓ̂s) ∪ (ℓ̂e, n] satisfy

σ̂[m] =

{
σi[m] m ∈ (ℓ̂e, n]

σi+1[m] m ∈ [1, ℓ̂s)
(16)

27

where we recall that σi ∈ Cout is the i’th outer codeword, so that ci = σi ◦ Cin. To see that
(16) holds for most m, we observe that for any m ∈ [1, ℓ̂s) ∪ (ℓ̂e, n], the probability that
σ̂[m] does not satisfy (16) is at most P Cin

fail , and so the expected number to not satisfy (16) is

P Cin
fail (n − 2βn − 1). Thus, by a Chernoff bound (Lemma 1), the probability that more than

(1 + ξ)P Cin
fail (n − 2βn − 1) of these m do not satisfy (16) is at most exp(−Ω(n)), where the

constant inside the Ω(·) depends on p, β and ξ.

Next, we argue that if the favorable case above occurs, then σ̂ is a noisy version of σi, with
not too many errors or erasures.

Since we assume that Eẑ did not occur, we have that ẑ = zi+1. Thus, our choice of ordering
of the codewords of C (see Equation (5)) implies that

ci = ci+1 ⊕ azi+1 = ci+1 ⊕ aẑ.

Therefore, after σ̂ is done being updated in Algorithm 2 (that is, after line 12), for the
m ∈ [1, ℓ̂s) ∪ (ℓ̂e, n] that satisfy (8), we have

σ̂[m] =

{
ci+1[m]⊕ aẑ[m], if m ∈ [1, ℓ̂s)

ci[m], if m ∈ (ℓ̂e, n]
= ci[m]

Meanwhile, we have σ̂[m] = ⊥ for all m ∈ [ℓ̂s, ℓ̂e]. In the favorable case that (16) is satisfied
for all but (1 + ξ)P Cin

fail (n − 2βn − 1) values of m ∈ [1, ℓ̂s) ∪ (ℓ̂e, n], we conclude that σ̂ ∈ Fn
q

is a noisy version of σi ∈ Cout, where there are at most 2βn + 1 erasures, and at most
(1 + ξ)P Cin

fail · (n− 2βn− 1) errors.

2. ℓ̂ is in the boundary, i.e., ℓ̂ /∈ (βn, n− βn).

Again, since we assume that Eℓ̂ did not occur, the quantity ℓ defined in (10) satisfies ℓ ∈
[1, ℓ̂e] ∪ [ℓ̂s, n]. If ℓ ∈ [1, ℓ̂e], then for all m ∈ (ℓ̂e, ℓ̂s), the chunk c̃m is a corrupted version of
the inner codeword ci[m]. If ℓ ∈ [ℓ̂s, n], then for all m ∈ (ℓ̂e, ℓ̂s), the chunk c̃m is a corrupted
version of the inner codeword ci+1[m]. By the same argument as in the previous case, we
conclude that with probability at least 1− exp(−Ω(n)) over the choice of η, after Line 11 in
Algorithm 1, at least a 1− (1 + ξ) · P Cin

fail fraction of the m ∈ (ℓ̂e, ℓ̂s) satisfy

σ̂[m] =

{
σi[m] ℓ ∈ [1, ℓ̂e]

σi+1[m] ℓ ∈ [ℓ̂s, n]

Since we have σ̂[m] = ⊥ for all m ∈ [1, ℓ̂e] ∪ [ℓ̂s, n], this means that with probability 1 −
exp(−Ω(n)), when î is computed on Line 11, σ̂ is a corrupted version of either σi or σi+1,
with at most 2βn + 1 erasures and at most (1 + ξ)P Cin

fail (n− 2βn− 1) errors.

Thus, in either case, we have that when DecCout is called (Line 13 for Algorithm 2 or Line 11
for Algorithm 3), it is called on a corrupted codeword σ that has at most 2βn + 1 erasures and
at most (1 + ξ)P Cin

fail · (n − 2βn − 1) errors. Recall that our outer code can recover efficiently from
e errors and t erasures, as long as 2e + t < δoutn. Plugging in the number of errors and erasure

28

above, we see that indeed we have

2e + t ≤ 2(1 + ξ)P Cin
fail (n− 2βn− 1) + 2βn + 1

≤
(

2(1 + ξ)P Cin
fail + 2β +

1

n

)
· n

< δoutn

where the last inequality holds for large enough n (relative to 1
δout

) and by our inequality assumption
(14). We conclude that with probability at least 1− exp(Ω(n)):

• If ℓ̂ is in the middle, then î = i

• If ℓ̂ is in the boundary, then î is either i or i + 1, depending on which side of the boundary ℓ̂
is on.

This proves the claim.

4.2.4 Estimating j

Next, we argue that the estimate ĵ that Algorithm 1 returns satisfies |j − ĵ| = ∆(gj , gĵ) with high
probability. Before we state and prove that (in Claim 6 below), we first prove the correctness of
Algorithm 4, as this is used as a step in the process of deterimining ĵ.

Claim 5. Algorithm 4 is correct. That is, given i ∈ {0, 1, . . . , qk − 1}, compute-r(i) = ri.

Proof. Consider the task of computing ri from i. From Definition 6, we have

ri =

i∑
t=1

∆(wt−1, wt). (17)

Recalling that we may break up the codewords wt ∈ W into chunks, we see that there are three
types of contributions to ri: (1) Contributions from the chunks sm for m = 1, . . . , n + 1; (2)
contributions from the chunks c̃m for m = 1, . . . , n; and (3) contributions from the chunks L̃. We
consider each of these in turn.

1. The chunks sm. Since t − 1 and t have different parities, the chunks sm in wt−1 are all
completely different from those in wt. This contributes a total of (n + 1) · B · i to the sum
in (17).

2. The chunks c̃m. Recall from (5) that ct = ct−1 + azt , where azt is the ztth row of the
generator matrix A of C. Thus, the contribution to (17) of the chunks c̃m for m = 1, . . . , n is

i∑
t=1

∆(ct−1, ct) =
i∑

t=1

∥azt∥,

where ∥ · ∥ denotes hamming weight. For each z, from Observation 2, the number of t so that
z = zt is

⌊
i+2z

2z+1

⌋
. Thus, the total contribution to ri from the c̃m chunks is

k′k−1∑
z=0

⌊ i + 2z

2z+1
⌋ · ∥az∥.

29

3. The chunk L̃. Recall that what goes into the chunk L̃ in ct is L(zt), where L is the code
that repeats each bit representing zt exactly L/ log(kk′) times. Thus, the contribution to (17)
from these chunks is

i∑
t=1

∆(L(zt−1),L(zt)) = L/ log(kk′)
i∑

t=1

∆(bin(zt−1), bin(zt)),

where bin(z) denotes the binary expansion of z. By Observation 2, zt > 0 if and only if t is
even. Thus, for all z ∈ {1, 2, . . . , kk′ − 1}, z = zt implies that zt−1 = zt+1 = 0. This means
that the contributions from the two terms

∆(bin(zt−1, zt)) + ∆(bin(zt, zt+1))

is given by 2∥bin(zt)∥. Again by Observation 2, the number of times each such z appears as
zt for some t ≤ i is

⌊
i+2z

2z+1

⌋
. Thus, the total contribution to (17) of these terms is

L/ log(kk′)
kk′−1∑
z=1

⌊
i + 2z

2z+1

⌋
· 2∥bin(z)∥ = L/ log(kk′)

kk′−1∑
z=0

⌊
i + 2z

2z+1

⌋
· 2∥bin(z)∥

where in the equality we have added back in the t = 0 term as ∥bin(0)∥ = 0 and this does
not affect the sum.

Finally, we observe that Algorithm 4 exactly computes the three contributions above. First, it
initializes r̂i to (n+1)Bi to account for the sm chunks; and then it loops over all z ∈ {0, 1, . . . , kk′−1}
and adds the contributions from the c̃m and L̃ chunks.

Claim 6. Let j ∈ [N] and set i to be such that, j ∈ [ri, ri+1). Further, let x = gj ⊕ η be the noisy
version of gj and ĵ be the output of Algorithm 1. Let t > 0. If the bad events Eℓ̂, Eẑ, and Eî do

not occur, then the probability that |j − ĵ| > t, conditional on this, is bounded by

Pr
η

[
|j − ĵ| > t |Eℓ̂, Eẑ, Eî

]
≤ exp(−Ω(t)) ,

where the constant inside the Ω(·) depends on p.

Proof. As in the proofs of earlier claims, we separate the analysis into two scenarios: one where ℓ̂
is in the middle, and one where it is in the boundary.

1. ℓ̂ ∈ (βn, (1− β)n) is in the middle.

In this case the function get-estimate (Algorithm 2) is invoked to compute ĵ. Since we
assume that Eℓ̂, Eẑ, and Eî all hold, we have î = i. By Claim 5, given i, the value compute-r(̂i)
computed on Line 16 is equal to rî and hence equal to ri.

Next, we will show that the estimate ĵ computed in Algorithm 2 satisfies ĵ ∈ [ri, ri+1). To see

this observe that Algorithm 2 first computes ˆ̄j = DecU (x[H]⊕wî[H]) = DecU (x[H]⊕wi[H]).
Recall from Observation 5 that since j ∈ [ri, ri+1), we have gj [H]⊕ wi[H] = EncU (j̄). (Here
we are using the fact that the set H = {m : wi[m] ̸= wi+1[m]} in Algorithm 2 is the set of
elements that appear in the vector hi). Since x = gj ⊕ η, we see that

ˆ̄j = DecU (EncU (j̄)⊕ η[H]).

30

Now, we consider the probability that ˆ̄j is very different than j̄. For any fixed ˆ̄j, we claim
that

Pr
η

[
ˆ̄j = DecU (EncU (j̄)⊕ η[H])

]
≤ exp(−Ω(|ˆ̄j − j̄|)).

Indeed, EncU (j̄) and EncU (ˆ̄j) differ on |j̄ − ˆ̄j| coordinates, and DecU—which just finds the
ˆ̄j that is closest to the received word—will return ˆ̄j rather than the correct answer j̄ only
if at least half of these bits are flipped by η[H]. The probability that this occurs is the

probability that at least half of |ˆ̄j − j̄| i.i.d. random bits, distributed as Ber(p), are equal to
one. As p < 1/2, by a Chernoff bound (Lemma 1), the probablity that this occurs is at most

exp(−Ω(|j̄− ˆ̄j|)), where the constant inside the Ω(·) depends on p. Thus, the probability that

DecU returns any ˆ̄j with |ˆ̄j − j̄| ≥ t is at most

Pr
η

[
|j̄ − ˆ̄j| ≥ t

]
= Pr

η
[|j̄ −DecU (EncU (j̄)⊕ η[H])| ≥ t]

≤
∑

ˆ̄j≥j̄+t

Pr
[
ˆ̄j = DecU (EncU (j̄)⊕ η[H])

]
+
∑

ˆ̄j≤j̄−t

Pr
[
ˆ̄j = DecU (EncU (j̄)⊕ η[H])

]
≤ 2

∑
s≥t

exp(−Ω(s))

≤ exp(−Ω(t)). (18)

This shows that j̄ is likely close to ˆ̄j. As we observed above, the value compute-r(̂i) computed
by Algorithm 2 is equal to ri, so we have

ĵ = compute-r(̂i) + ˆ̄j = ri + ˆ̄j,

and by definition we have that
j = ri + j̄.

Thus, |j − ĵ| = |j̄ − ˆ̄j|, and (18) implies that

Pr
[
|j − ĵ| ≥ t

]
≤ exp(−Ω(t)) ,

as desired.

2. ℓ̂ is in the boundary.

In this case, the function get-estimate-boundary is invoked. Since we assume that Eℓ̂, Eẑ,

and Eî, we have that î = i if ℓ ∈ [0, ℓ̂e] and î = i + 1 if ℓ ∈ [ℓ̂s, n].

First assume that ℓ ∈ [0, ℓ̂e], and note that this implies both that î = i and that the crossover
point satisfies hi,j̄ ≤ L + 2βn(n′ + B). Further, by Claim 5, we have compute-r(̂i) = ri.

Let
H1 = {m | wi+1[m] ̸= wi[m], 0 ≤ m ≤ L + 2βn(n′ + B)},

and let
H2 = {m | wi[m] ̸= wi−1[m], d− 2βn(n′ + B) ≤ m ≤ d}.

31

(These are the two values of H chosen in Algorithm 3 when computing ĵ1 and ĵ2, respectively;
we give them separate names H1 and H2 for the analysis.)

First we analyze the choice of ĵ1. By Observation 5 and the fact that hi,j̄ ∈ H1, we have
gj [H1]⊕ wi[H1] = EncU (j̄), and so as above we have

ˆ̄j1 = DecU (EncU (j̄)⊕ η[H1]).

The same reasoning as in Case 1 implies that

Pr[|ĵ1 − j| ≥ t/2] ≤ exp(−Ωp(t)). (19)

Further, in this case we also have that

|ĵ1 − j| = ∆(gj , gĵ1).

Indeed, this follows because, regardless of the noise η, we have ˆ̄j1 ≤ |H1| ≤ ∆(wi, wi+1), which
means that

ĵ = compute-r(̂i) + ˆ̄j1 = ri + ˆ̄j1 ∈ [ri, ri+1).

Now, since j and ĵ1 are both in the same interval [ri, ri+1), we must have ∆(gj , gĵ1) = |j− ĵ1|.
This is true because—assuming without loss of generality that ĵ1 ≥ j—to get from gj to gĵ1 ,

we flip the bits indexed by hi[j + 1], hi[j + 2], . . . , hi[ĵ1], and there are |j − ĵ1| such bits.

Next, we analyze ĵ2. First, note that as with ĵ1, we have

|ĵ2 − j| = ∆(gj , gĵ2). (20)

Indeed, by construction we have ˆ̄j2 ≤ |H2|, which means that ĵ2 = ri − ˆ̄j2 is towards the end
of the interval [ri−1, ri); concretely, it implies that the crossover point corresponding to ĵ2
satisfies

hi−1,ĵ2−ri−1
∈ [d− 2βn(n′ + B), d].

Thus, to get from the codeword gĵ2 to the codeword gj , we need to flip all of the bits indexed
by m in the set

{m |wi[m] ̸= wi−1[m], hi−1,ĵ2−ri−1
≤ m ≤ d},

as well as all the bits indexed by m in the set

{m |wi[m] ̸= wi+1[m], 0 ≤ m ≤ hi,j̄}.

The number of elements in the first set is ĵ2 = ri − ˆ̄j2, and the number in the second set is
j̄ = j − ri. Since β < 1/4 and hi,j̄ ≤ L + 2βn(n′ + B) and hi−1,ĵ2−ri−1

≥ d − 2βn(n′ + B),
these two sets are disjoint. Thus the total number of indices we need to flip to get from gĵ2
to gj is the sum of the sizes of these two sets, which is

(ri − ˆ̄j2) + (j − ri) = j − ˆ̄j2,

establishing (20). A similar argument shows that ∆(gĵ1 , gĵ2) = |ĵ1 − ĵ2|.

32

Next, note that Algorithm 3 sets ĵ = ĵ2 only if ∆(x, gĵ2) ≤ ∆(x, gĵ1). To analyze the

probability that this occurs, fix ĵ1 and ĵ2, and define

A1 := A1(ĵ1) := {m ∈ H1 |hi,j̄ ≤ m ≤ hi,ĵ1−ri
}

and let

A2 := A2(ĵ1, ĵ2) := {m ∈ H2 |m ≥ hi−1,ĵ2−ri−1
} ∪ {m ∈ H1 |m ≤ min(hi,j̄ , hi,ĵ1−ri

)}.

That is, A1 is the set of indices m so that gĵ1 [m] ̸= gj [m] but gĵ2 [m] = gj [m], and A2 is the set
of indices m so that gĵ2 [m] ̸= gj [m] but gĵ1 [m] = gj [m]. Notice that |A1|+ |A2| = ∆(gĵ1 , gĵ2).
Notice also that

|A1| =

{
∆(gj , gĵ1) = ĵ1 − j j ≤ ĵ1

0 j > ĵ1
and |A2| =

{
∆(gj , gĵ2) = j − ĵ2 j ≤ ĵ1

∆(gĵ1 , gĵ2) = ĵ1 − ĵ2 j > ĵ1
(21)

Now, consider the event that Algorithm 3 sets ĵ = ĵ2, which happens only if ∆(x, gĵ2) ≤
∆(x, gĵ1). Note that

∆(x, gĵ2) = ∆(gj ⊕ η, gĵ2) = |A2| − ∥η[A2]∥+ ∥η[Ā2]∥

and a similar expression holds for ∆(x, gĵ1). Therefore, the event that ∆(x, gĵ2) ≤ ∆(x, gĵ1)
is the same as the event that

|A2| − ∥η[A2]∥+ ∥η[A1]∥ ≤ |A1| − ∥η[A1]∥+ ∥η[A2]∥,

which, rearranging, is the same as the event that

|A2| − 2∥η[A2]∥ − (|A1| − 2∥η[A1]∥) ≤ 0. (22)

Note that |A2| − 2∥η[A2]∥ is a sum of |A2| independent random variables that are +1 with
probability 1−p and −1 with probability p, and similarly for |A1|−2∥η[A1]∥. Moreover, since
A1 and A2 are disjoint, the whole left hand side of (22) is the sum of |A1|+ |A2| independent
±1-valued random variables, and the expectation of the left-hand-side is (|A2|− |A1|)(1−2p),
which is larger than zero when |A2| > |A1| and p < 1/2. By Hoeffding’s inequality (Lemma 2),
provided that |A2| > |A1| and p < 1/2, the probability that (22) occurs is at most

Pr
η

[∆(x, gĵ2) ≤ ∆(x, gĵ1)] ≤ 2 exp

(
−Ωp

(
(|A2| − |A1|)2

|A1|+ |A2|

))
,

where the constant inside the Ωp(·) depends on the gap between p and 1/2.

Now, consider the event E that Algorithm 3 picks ĵ1 and ĵ2 so that all of the following hold:

i. ∆(x, gĵ2) ≤ ∆(x, gĵ1)

ii. |ĵ1 − j| ≤ t/2

iii. |ĵ2 − j| ≥ t

33

By a union bound, the probability that E occurs is at most

Pr[E] ≤
∑
ĵ1,ĵ2

Pr[∆(x, gĵ2) ≤ ∆(x, gĵ1)] ≤
∑
ĵ1,ĵ2

2 exp

(
−Ωp

(
(|A2| − |A1|)2

|A1|+ |A2|

))
,

where the sum is over all ĵ1 and ĵ2 that satisfy (ii) and (iii) above. For any such ĵ1 and ĵ2,
we have

(|A2| − |A1|)2

|A2|+ |A1|
≥ |ĵ2 − j|

6
.

Indeed, (ii) and (iii) imply that |ĵ2 − j| ≥ 2|ĵ1 − j|, so by (21), if j ≥ ĵ1, then

(|A2| − |A1|)2

|A2|+ |A1|
= |A2| = |ĵ1 − ĵ2| ≥ |ĵ2 − j| − |ĵ1 − j| ≥ |ĵ2 − j|

2
,

and if j < ĵ1, then

(|A2| − |A1|)2

|A2|+ |A1|
=

((j − ĵ2)− (ĵ1 − j))2

ĵ1 − ĵ2
≥ (|ĵ2 − j|/2)2

(3/2)|j − ĵ2|
=
|ĵ2 − j|

6
.

Thus, we have

Pr[E] ≤
∑
ĵ1,ĵ2

Pr[∆(x, gĵ2) ≤ ∆(x, gĵ1)]

≤
∑
ĵ1,ĵ2

2 exp
(
−Ωp(|ĵ2 − j|)

)
≤ 2t

∑
ĵ2

exp(−Ωp(|ĵ2 − j|))

≤ 2t
∑
s≥t

exp(−Ωp(s))

≤ 2t exp(−Ωp(t)) = exp(−Ωp(t)).

Above, we have used the fact from (ii) that there are at most t values of ĵ1 in the sum; then
we have used (iii) (and the fact that in this case, Algorithm 3 will only choose ĵ2 < j) to
re-write the sum over ĵ2 as a sum over s ≥ t.

Altogether, by a union bound over the event E analyzed above and the event that |ĵ1−j| ≥ t/2
in (19), we conclude that for all t large enough (relative to the gap between p and 1/2), with
probability at least 1 − 2 exp(−Ωp(t)) = 1 − exp(−Ωp(t)), we have both |ĵ1 − j| ≤ t/2 and
also that E does not occur. Suppose that this favorable case happens.

Now consider ĵ. If ĵ = ĵ1, then by above, |ĵ1 − j| ≤ t/2 and so |ĵ − j| ≤ t/2. On the other
hand, if ĵ = ĵ2, then either |ĵ−j| = |ĵ2−j| < t, or else event E occurs. (Indeed, if |ĵ2−j| ≥ j,
then (iii) holds; (i) holds because Algorithm 3 chose ĵ = ĵ2; and (ii) holds because we are
assuming that the favorable case in (19) occurs). But since we are assuming that E does not
occur, this implies that |ĵ−j| ≤ t. Either way, we conclude |ĵ−j| ≤ t except with probability
exp(−Ωp(t)), which proves the claim when ℓ̂ is on the boundary and ℓ ∈ [0, ℓ̂e].

The above handled only the sub-case when ℓ ∈ [0, ℓ̂e]. There is also the sub-case where
ℓ ∈ [ℓ̂s, n]. However, that case follows by an identical argument.

34

Thus, we have handled both the case when ℓ̂ is in the middle and the case where ℓ̂ is on the
boundary, and this proves the claim.

Finally, we are ready to prove Theorem 2.

Proof of Theorem 2. Claim 6 implies that |ĵ − j| ≤ t with probability at least 1 − exp(Ω(t)),
provided that none of Eℓ̂, Eẑ, and Eî occur. By Claims 2, 3 and 4 together with a union bound,
the probability that any of these occur is at most exp(−Ω(n))+exp(−Ω(L/ log(kk′)))+exp(−Ω(n)).
Thus, we conclude that with probability at least

1− exp(−Ω(n))− exp(−Ω(L/ log(kk′))− exp(−Ω(t)),

we have |ĵ − j| ≤ t, as desired.

5 Putting all together and choosing parameters

In order to prove Theorem 1, we will plug in a Reed–Solomon (RS) code as Cout. Thus, before we
prove the theorem, we recall the definition of RS codes and their basic properties.

Definition 8. Let α1, α2, . . . , αn be distinct points of the finite field Fq of order q. For k < n the
[n, k]q RS code defined by the evaluation set {α1, . . . , αn} is the set of codewords

{(f(α1), . . . , f(αn)) | f ∈ Fq[x],deg f < k} .

It is well-known that RS codes are Maximum Distance Separable (MDS), which means in
particular that an RS code of rate R and distance δ has

R = 1− δ + 1/n.

Moreover, encoding and decoding of RS codes can be done in O(n · poly(log n)) time (see e.g.,
[Gao03,LCH14]).

We are now ready to prove our main result, which we restate here for the reader’s convenience.

Theorem 1. Fix constants p ∈ (0, 1/2) and a sufficiently small ε > 0. Fix a constant R ∈ (0, 1).
Let d be sufficiently large, in terms of these constants. Then there is an n′ = Θ(log d) so that the
following holds. Suppose that there exists a binary linear [n′, k′]2 code Cin with rate k′/n′ = R so
that Cin has a decoding algorithm DecCin that has block failure probability on the BSCp that tends
to zero as n′ → ∞.10 Then there is a robust Gray code G : {0, 1, . . . N − 1} → Fd

2 and a decoding
algorithm DecG : Fd

2 → {0, 1, . . . N − 1} so that:

1. The rate of G is R− ε.

2. Fix j ∈ {0, 1, . . . N−1}, let η ∼ Ber(p)d be a random error vector, and let ĵ := DecG(G(j)⊕η),
where η ∼ Ber(p)d. Then

Pr
η

[|j − ĵ| ≥ t] ≤ exp(−Ω(t)) + exp

(
−Ω

(
d

log d

))
,

where the constants inside the Ω(·) notation depend on p, ε, and R.

10See Definition 4 for a formal definition of the failure probability.

35

3. The running time of G (the encoding algorithm) is Õ(d3) and the running time of DecG (the
decoding algorithm) is Õ(d2) where the Õ(·) notation hides logarithmic factors.

Proof of Theorem 1. Given Theorem 2 and Proposition 1 we are left to show that we can choose
the outer code and the parameters L,B, β, ξ such that: (i) the rate of our Gray code is Rin − ε
where Rin is the rate of the inner code, (ii) that inequalities (13) and (14) hold, (iii) that the
running time of our encoder and decoder are as desired.

Let q = 2k
′

where k′ is a large enough integer. Let Cin be as in the theorem statement. We
start with choosing the outer code. We shall use as Cout an [n, k]q Reed–Solomon code where the
evaluation points are taken to be F∗

q , namely, n = q − 1. As Reed–Solomon codes are MDS codes,

we have that Rout = 1− δout + 1
n . Set δout to be ε/2, so Rout = 1− ε/2 + o(1).

Note that as Rin = k′/n′, and k′ = log q = log(n + 1), we have that n′ = (log(n + 1))/Rin.
We set L = (ε/8)nn′ and set B to be a sufficiently large constant. Then we plug in n′ in the

definition of d the length of the encoding of our Gray code (Definition 7) to get,

d = n
log(n + 1)

Rin
+ B · (n + 1) + 2L = Θ(n log n) ,

where the last equality follows as B = O(1) and that 2L = (ε/4)n((log(n+ 1))/Rin). We now turn
to compute the final rate according to (8). We get

RG ≥
(1− δout) · Rin

1 + (1 + 1
n) · 1√

n′ + ε
4

≥
(1− ε

2)Rin

1 + ε
2

≥ Rin − ε

where the first inequality follows as there exists a large enough integer n for which (1+1/n)/
√
n′ <

ε/4 (recall that n′ = O(log n)).
Now, note that by our choice of L, the failure probability of our algorithm is

Pr
[
|j − ĵ| ≥ t

]
≤ exp(−Ω(t)) + exp(−Ω(n)) .

We now show how to get the final failure probability as a function of d. Recall that d = Θ(n · log n),
which implies that n = Θ(d/ log d). Indeed, let C1, C2 be constants such that d/C1 ≤ n log n ≤ d/C2

for large enough n. It holds that

n ≥ d

C1 log n
≥ d

C1 log d− log(C2 log n)
≥ d

C1 log d
,

and a similar computation also shows that n = O(d/ log d). Thus,

Pr[|j − ĵ| ≥ t] ≤ exp(−Ω(t)) + exp

(
−Ω

(
d

log d

))
.

We proceed to show that the conditions given in Theorem 2 indeed hold.

36

First, we observe that our choice of L indeed satisfies L = ω(log(kk′) log log(kk′)), as L =
Θ(εn log n), which is much larger. Next, we show that we can choose constants β, ξ so that (13)
and (14) hold, namely that

2 exp(−CpB) < β < 1/4 and 2(1 + ξ)P Cin
fail + 2β < δout .

First, we choose a positive constant β < min{1/4, δout4 }, recalling that δout = 1 −R for our Reed-
Solomon code Cout, and thus δout is also a constant. Thus the second inequality in (13) is satisfied.
Next, we note that by assumption, P Cin

fail = o(1) as n′ → ∞, and thus for large enough values of

n′, we have P Cin
fail < δout/8; then we can choose any ξ < 1 and satisfy (14) given that β < δout/4.

Finally, we may choose B to be a sufficiently large constant (larger than ln(2/β)/Cp) and the first
inequality in (13) will hold as well.

Finally, we analyze the final running time of our scheme given our choice of the outer code.
Since RS codes can be encoded in time O(n ·poly(log n)), plugging this in Proposition 1 and noting
that n′ = log(n+ 1)/Rin ≤ log(d)/Rin, we get that the encoding of Gray code can be done in time

Õ(d3) + O(d · poly(log d)) + O(d · TEncCin
(log(d)/Rin)) = Õ(d3) ,

where the last equality follows since Cin can be encoded in polynomial time. Further, the decoding
time of RS codes is also O(n · poly(log n)), and thus, by our choice of B and the fact that n′ =
O(log n), we get that the decoding time is

Õ(d2) + O(d · poly(log d)) + O
(
d · TDecCin

(n′)
)

= Õ(d2) .

The last equality above follows because, without loss of generality, we may assume that TDecCin
(n′)

is at most poly(n′) · 2k′ , the running time of the brute-force maximum-likelihood decoder. As we
have k′ = log(n + 1), this is n · polylog(n) = d · polylog(d), and hence the final term above is
Õ(d2).

Acknowledgements

We thank the Simons Institute for Theoretical Computer Science for their hospitality and support.

References

[ACL+21] Jayadev Acharya, Clement Canonne, Yuhan Liu, Ziteng Sun, and Himanshu Tyagi.
Distributed estimation with multiple samples per user: Sharp rates and phase transition.
Advances in neural information processing systems, 34:18920–18931, 2021.

[ALP21] Martin Aumüller, Christian Janos Lebeda, and Rasmus Pagh. Differentially private
sparse vectors with low error, optimal space, and fast access. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security, pages 1223–
1236, 2021.

[ALS23] Jayadev Acharya, Yuhan Liu, and Ziteng Sun. Discrete distribution estimation under
user-level local differential privacy. In International Conference on Artificial Intelligence
and Statistics, pages 8561–8585. PMLR, 2023.

37

[Ari08] Erdal Arikan. A performance comparison of polar codes and reed-muller codes. IEEE
Communications Letters, 12(6):447–449, 2008.

[AS23] Emmanuel Abbe and Colin Sandon. A proof that reed-muller codes achieve shannon
capacity on symmetric channels. In 2023 IEEE 64th Annual Symposium on Foundations
of Computer Science (FOCS), pages 177–193. IEEE, 2023.

[BGN+22] Jaros law B lasiok, Venkatesan Guruswami, Preetum Nakkiran, Atri Rudra, and Madhu
Sudan. General strong polarization. ACM Journal of the ACM (JACM), 69(2):1–67,
2022.

[FW24] Dorsa Fathollahi and Mary Wootters. Improved construction of robust gray code. arXiv
preprint arXiv:2401.15291, 2024.

[Gao03] Shuhong Gao. A new algorithm for decoding reed-solomon codes. In Communications,
information and network security, pages 55–68. Springer, 2003.

[Gra53] Frank Gray. Pulse code communication, March 17 1953. US Patent 2,632,058.

[GRY20] Venkatesan Guruswami, Andrii Riazanov, and Min Ye. Arikan meets shannon: Polar
codes with near-optimal convergence to channel capacity. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, pages 552–564, 2020.

[GW24] Venkatesan Guruswami and Hsin-Po Wang. Capacity-Achieving Gray Codes, 2024.
arXiv eprint forthcoming.

[GX14] Venkatesan Guruswami and Patrick Xia. Polar codes: Speed of polarization and poly-
nomial gap to capacity. IEEE Transactions on Information Theory, 61(1):3–16, 2014.

[HAU14] Seyed Hamed Hassani, Kasra Alishahi, and Rüdiger L Urbanke. Finite-length scaling
for polar codes. IEEE Transactions on Information Theory, 60(10):5875–5898, 2014.

[HVDH21] David Harvey and Joris Van Der Hoeven. Integer multiplication in time O(n log n).
Annals of Mathematics, 193(2):563–617, 2021.

[Knu11] Donald E Knuth. The art of computer programming, volume 4A: combinatorial algo-
rithms, part 1. Pearson Education India, 2011.

[LCH14] Sian-Jheng Lin, Wei-Ho Chung, and Yunghsiang S Han. Novel polynomial basis and
its application to reed-solomon erasure codes. In 2014 ieee 55th annual symposium on
foundations of computer science, pages 316–325. IEEE, 2014.

[LP24] David Rasmussen Lolck and Rasmus Pagh. Shannon meets gray: Noise-robust, low-
sensitivity codes with applications in differential privacy. In Proceedings of the 2024 An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1050–1066. SIAM,
2024.

[MU17] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and
probabilistic techniques in algorithms and data analysis. Cambridge university press,
2017.

38

[RP23] Galen Reeves and Henry D Pfister. Reed–muller codes on bms channels achieve vanish-
ing bit-error probability for all rates below capacity. IEEE Transactions on Information
Theory, 2023.

[SK20] Madhu Sudan and Kenz Kallal. Essential Coding Theory Lecture Notes,
Lecture 3, 2020. Available at: https://people.seas.harvard.edu/ madhusu-
dan/courses/Spring2020/scribe/lect03.pdf. Accessed June 2024.

[TV13] Ido Tal and Alexander Vardy. How to construct polar codes. IEEE Transactions on
Information Theory, 59(10):6562–6582, 2013.

[WX10] Wenjie Wang and Xiang-Gen Xia. A closed-form robust chinese remainder theorem and
its performance analysis. IEEE Transactions on Signal Processing, 58(11):5655–5666,
2010.

[XXW20] Li Xiao, Xiang-Gen Xia, and Yu-Ping Wang. Exact and robust reconstructions of
integer vectors based on multidimensional chinese remainder theorem (md-crt). IEEE
Transactions on Signal Processing, 68:5349–5364, 2020.

39

