Optimal Two-Dimensional Reed—Solomon Codes
Correcting Insertions and Deletions

Roni Con* Amir Shpilka Itzhak Tamo *

Abstract

Constructing Reed—Solomon (RS) codes that can correct insertions and deletions
(insdel errors) has been considered in numerous recent works. For the special case
of two-dimensional RS-codes, it is known [CST23] that an [n, 2], RS-code that can
correct from n — 3 insdel errors satisfies that ¢ = Q(n?®). On the other hand, there
are several known constructions of [n, 2], RS-codes that can correct from n—3 insdel
errors, where the smallest field size is ¢ = O(n*). In this short paper, we construct
[n, 2], Reed-Solomon codes that can correct n — 3 insdel errors with ¢ = O(n?),
thereby resolving the minimum field size needed for such codes. |
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1 Introduction

Constructing error-correcting codes against synchronization errors has received a lot of
attention recently. The most common model for studying synchronization errors is the
insertion-deletion model (insdel for short): an insertion error is when a new symbol is
inserted between two symbols of the transmitted word. A deletion is when a symbol is
removed from the transmitted word. These are errors that affect the length of the received
word. For example, over the binary alphabet, when 100110 is transmitted, we may receive
the word 11011000, which is obtained from three insertions (1 at the beginning and two
0s at the end) and one deletion (one of the 0’s at the beginning of the transmitted word).
Generally, insdel errors cause the sending and receiving parties to become “out of sync”
which makes them inherently more difficult to deal with.

Insdel errors appear in diverse settings such as optical recording, semiconductor de-
vices, integrated circuits, and synchronous digital communication networks. Due to the
importance of the model and our lack of understanding of some basic problems concerning
it, constructing efficient codes that can handle insdel errors is the topic of many recent
works [HS17, BGZ17, IGW17, SWZGY17, [CJLW1S| Hael9, [CGHL21l, I(GHS20, IGH21l,
LTX23| (see also the excellent survey [HS21]). Further, codes for correcting insdel er-
rors attract a lot of attention due to their possible application in correcting errors in
DNA-based storage systems [LSWZYT19, HMGI9, ISH*22]. This recent increased interest
was paved by substantial progress in synthesis and sequencing technologies. The main
advantages of DNA-based storage over classical storage technologies are very high data
densities and long-term reliability without an electrical supply.

Reed-Solomon codes are the most widely used family of codes in theory and practice.
Their extensive use can be credited to their simplicity, as well as their efficient encoding
and decoding algorithms. Some of their notable applications include QR codes [Soo0§],
secret sharing schemes [MS81], and distributed storage systems [TB14, [(GW16]. As such,
it is an important problem to understand whether they can also decode from insdel errors.
This problem received a lot of attention recently [SNWO02, WMSNO04|, [TSNO07, [DLTX19,
LT21], [CZ21], L.X22, I[CST23]. An open problem that was raised in these line of works is
what is the minimal field size for which there exist an [n, k], RS-code that can correct
from n — 2k + 1 insdel errors, the maximum possible insdel errors that can be corrected.
In this paper, we give an answer to this question for RS-codes of dimension k£ = 2, and
show that the minimal field size is ¢ = ©(n?).

1.1 Basic definitions and notation

For an integer k, we denote [k] = {1,2,...,k}. Throughout this paper, log(z) refers to
the base-2 logarithm. For a prime power ¢, we denote with I, the field of size q.

A linear code over a field F is a linear subspace C C F". The rate of a linear code C
of block length n is R = dim(C)/n. Every linear code of dimension k can be described
as the image of a linear map, which, abusing notation, we also denote with C, i.e.,
C : F¥ — F". When C C F} has dimension k we say that it is an [n, k], code (or an
[n, k] code defined over F,). The minimal distance of C with respect to a metric d(-,-) is
defined as diste := min,,ec d(v, w). Naturally, we would like the rate to be as large as
possible, but there is an inherent tension between the rate of the code and the minimal



distance (or the number of errors that a code can decode from). In this work, we focus
on codes against insertions and deletions.

Definition 1.1. Let s be a string over the alphabet 2. The operation in which we remove
a symbol from s is called a deletion and the operation in which we place a new symbol
from ¥ between two consecutive symbols in s, in the beginning, or at the end of s, is called
an insertion.

We next define Reed-Solomon codes (RS-codes from now on).

Definition 1.2 (Reed-Solomon codes). Let oy, aq,...,a, € F, be distinct points in a
finite field F, of order ¢ > n. For k < n the [n,k|, RS-code defined by the evaluation
vector oo = (au, ..., ) is the set of codewords

{ep = (flan),. flaw)) [ f € Fola], deg [ <k}

Namely, a codeword of an [n, k|, RS-code is the evaluation vector of some polynomial
of degree less than k at n predetermined distinct points. It is well known (and easy to
see) that the rate of [n, k], RS-code is k/n and the minimal distance, with respect to the
Hamming metric, is n — k + 1.

1.2 Related work

Linear codes against insdel errors. The basic question of whether there exist good
linear codes for the insdel model was first addressed in the work of Cheng, Guruswami,
Haeupler, and Li [CGHL21]. Specifically, they showed that there are linear codes of rate
R =(1-9)/2— h(d)/logy(q). that can correct from § fraction of insdel errors. They
also showed an almost matching upper bound which they called the half-Singleton bound,
given next.

Theorem 1.3 (Half-Singleton bound: Corollary 5.1 in [CGHL21]). Every linear insdel
code which is capable of correcting a ¢ fraction of deletions has rate at most (1—0)/2+o0(1).

Remark 1.4. The following non-asymptotic version of the Half-Singleton bound can be
deriwved from the proof of Corollary 5.1 in [CGHL21)]: An [n, k] linear code can correct at
most n — 2k + 1 insdel errors.

Cheng et al. [CGHL21] also constructed the first asymptotically good binary linear
codes for insdel errors. Their codes have rate R < 273 and can correct efficiently from
d < 1/400 insdel errors. Then, Con et al. [CST22] constructed linear codes with better
rate-distance tradeoffs, and Cheng et al. [CJL"23| constructed asymptotically good codes
in the high-noise and high-rate regimes, covering regimes of rate-distance that are not
achievable by the codes of [CST22]. We note that the open question of constructing codes
over small alphabets that achieve the half-Singleton bound is still open.

RS-codes against insdel errors. To the best of our knowledge, Safavi-Naini and
Wang [SNWO02] were the first to study the performance of RS-codes against insdel errors.
They gave an algebraic condition that is sufficient for an RS-code to correct from insdel
errors, yet they did not provide any construction.
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Work Field size
[DLTX19] | exp(n)
[LX22] O(n®)
[CST23] O(n?)
This work |  O(n?)

Table 1: Previous [n, 2], RS-code cosntructions that can correct from n — 3 insdel errors
and their field size.

Wang, McAven, and Safavi-Naini [WMSN04] constructed a [5,2] RS-code capable of
correcting a single deletion. Then, in [TSNOT7], Tonien and Safavi-Naini constructed an
[n, k] generalized-RS-codes capable of correcting from log;,;n — 1 insdel errors. Con,
Shpilka, and Tamo [CST23|] showed the existence of [n, k], RS-codes that can correct
from n — 2k 4+ 1 where ¢ = n®®. These codes are the first linear codes that achieve the
half-Singleton bound. They also provided deterministic construction of such code over a
field of size n*”" .

Much attention was given to the specific case of 2-dimensional RS-codes. Specifically,
the goal is to construct [n, 2], RS-codes correcting n — 3 insdel errors with the smallest ¢
possible. By Remark [I.4], it should be noted that these codes are optimal for correcting
insdel errors, as they correct the maximum possible number of such errors. Numerous
constructions were published [DLTX19, [CZ21, [CST23|, [LX22] (see table Table [1). The
current best construction is due to [CST23] that presented an [n, 2], RS-code correcting
n — 3 insdel errors where ¢ = O(n?*). They also proved that the field size of an [n, 2],
RS-code correcting n — 3 deletions must be ¢ = Q(n3). This work closes the gap and
shows that ¢ = ©(n?).

1.3 Our results

Our main result is the following theorem.

Theorem 1.5. For any n > 3, there exists an explicit [n,2]|, RS-code that can correct
from n — 3 insdel errors, where ¢ = O(n?).

As described earlier, an explicit construction of an RS-code amounts to specifying
an evaluation vector. In our constructions, we define sets of size n and prove that any
ordering of these n points into an evaluation vector defines a two-dimensional RS-code
that can correct from n — 3.

1.4 An algebraic condition

In this section, we recall the algebraic condition presented in [CST23]. We first make the
following definitions: We say that a vector of indices I € [n|® is an increasing vector if
its coordinates are monotonically increasing, i.e., for any 1 < i < j <'s, I; < I;, where
I; is the ith coordinate of I. For two vectors I, J € [n]**~! with distinct coordinates we
define the following (variant of a) vandermonde matrix of order (2k — 1) x (2k — 1) in the
formal variables X = (X1,...,X,):



1 X, Xt X, L X

1
1 X, ..o XHtooXx, L Xk
ViaX) =1, [ ! 1)
U X, oo X X o0 X5
Proposition 1.6. [CST23, Proposition 2.1] Consider the [n, k], RS-code defined by an
evaluation vector a = (ay,...,ap). If for every two increasing vectors I,J € [n]?*~!

that agree on at most k — 1 coordinates, it holds that det(Vr () # 0, then the code
can correct any n — 2k + 1 insdel errors. Moreover, if the code can correct any n —
2k + 1 insdel errors, then the only possible vectors in Kernel (Vi j(a)) are of the form

O, fry oy oot —f1y ooy —fro1)-

2 Explicit construction for k£ = 2 with qubic field size

In this section, we prove Theorem which is restated for convenience.

Theorem 1.5. For any n > 3, there ezists an explicit [n,2]|, RS-code that can correct
from n — 3 insdel errors, where ¢ = O(n?).

The proof of Theorem will follow from two code constructions of an [n,2] RS-
code that can correct from n — 3 insdel errors, over a field of size O(n?). The first code
construction works for any characteristic, whereas the second construction works only for
fields of characteristic not equal to 2. However, for these characteristics, given the same
field size, the latter construction provides a slightly longer code compared to the first
construction.

2.1 First Construction

In this section, we shall present the first construction that works for any finite field. Both
the construction and its proof are given in the following proposition.

Proposition 2.1. Let A CF; be a set of size n such that for any two distinct elements
9,6' € A, 0 # —0', and let v be a root of a degree 3 irreducible polynomial over F,. Let
the vector a = (v, g, ..., ap) be some ordering of the n elements § + 61 -~,5 € A.
Then, the [n,2] RS-code defined over F s with the evaluation vector o can correct any
n — 3 insdel errors.

Remark 2.2. Note that if the characteristic of the field F, does not equal to 2, then,
necessarily, the length of the code is at most (¢ — 1)/2. As for each § € A,—0 ¢ A. On
the other hand, if the characteristic equals to 2, then it can be as large as g — 1. However,
in both cases ¢ = O(n?).

Proof. Assume towards a contradiction that the claim is false, then by Proposition
there exist two vectors of distinct evaluation points (51, 52, 8s), (54, Bs, 36), that agree on
at most one coordinate, such that,

1 B Ba
1 By B5]|=0.
1 Bs Bs
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Equivalently,

(B1 = B2)(B5 — B6) — (Ba — B5)(B2 — P3) = 0.
Write 3; := &;+0; ' - for i € [6] and observe that the LHS is a polynomial in 7 of degree
less than 3 over F,. Namely,

Po(8) +p1(d) - v + pa(d) - 7* =0
where,
Po(6) = (61 — 02)(d5 — d6) — (2 — 03)(04 — 05)
p1(8) = (01— 82)(d5 " — dg") + (6" — 05 1)(d5 — &)
— (051 = 051) (64 — 85) — (02 — 83) (05" — 051)
p2(8) = (07" =0, 1) (05" = d67) — (05" — 05 1)(05 " = &57) -

p1(0) and pa(d) can be simplified further,

p1(8) = (61 — 62)(d5 — J6) (—(6102) ™" — (0506) ")
— (82 — 83) (04 — 85) (—(0205) ™" — (005) ")
pa(8) = (61026506) " (01 — 2) (05 — J6)
— ((52535455)71((52 — 03)(04 — 05) .

Next, since the minimal polynomial of v over F, is of degree 3, p;(§) = 0 for i = 0,1, 2.
po(0) = 0 implies that,

(01 — 02)(05 — d6) = (62 — d5) (04 — 05) # 0, (2)
where the inequality follows since the coordinates of each of the vectors (41, ds, d3) and
(04,05, 0¢) are distinct. Substituting in the equation py(d) = 0 gives,
8,06 = 0304, (3)
and by p1(6) = 0 and (3),
0109 + 0506 = 0203 + 0405 . (4)

and (3)) imply that,
0105 + 0206 = 0204 + 0305 .

Subtracting the last equation from we get,
(01 — 06) (02 — d5) = (05 — 64)(02 — J5) - (5)
If 5 = d5 then by 01 + 9 = 03 + 4. Together with , we get that both {4, dg }
and {d3,d4} are solutions to the quadratic equation,
2 — (03 + 64)1 + 636, =0 .

Therefore, {01,6} = {d3,d4}, and we arrive at a contradiction to the assumption that two
evaluation vectors have distinct coordinates and they agree on at most one coordinate
(indeed, if (51 = 54 and (53 = 66 then 61 = 54 and 63 = BG) Otherwise, 52 7é (55 and
becomes §; — d = 03 — 4. Combining it with (3)), we get that, as before, both {41, —ds}
and {03, —d4} are solutions to the quadratic equation z* — (03 — d4)x — 304 = 0, and
therefore {61, —d} = {03, —04}. Recall that for 6 € A, —§ ¢ A, thus, the only possibility
is that 0; = d3 and 4 = J¢ and again we arrived at a contradiction. The result follows. [
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2.2 Second Construction

In this section, we give the second code construction that improves the length of the
code when the characteristic of the finite field F, does not equal to 2 (See Remark [2.2)).
Specifically, the code’s length can be as large as ¢ — 1. The evaluation points of the
constructed RS-code and the proof are very similar to the first construction.

Proposition 2.3. Let F, be a finite field of characteristic p > 2 and let A C F; be a
subset of size n. Let v be a root of a degree 3 irreducible polynomial over F,, and let the
vector o = (aq, o, . .., ) be some ordering of the n elements 6 + 6% -v,6 € A. Then,
the [n,2] RS-code defined over Fys with the evaluation vector o can correct any n — 3
insdel errors.

Proof. As before, assume towards a contradiction that the claim is false, then by Propo-
sition [1.6| there exist two vectors of distinct evaluation points (31, 52, 83) and (B4, Bs, 56),
that agree on at most one coordinate, such that

1 B B
1 B2 B5]|=0.
L B3 Be

Equivalently,
(Br— B2)(B5 — Bs) — (B2 — B3)(Bs — B5) = 0.
Write 3; := 0; + 07 - v and observe that the LHS is a polynomial in v of degree less than
3 over F,. Namely, po(8) + p1(8) - v + pa(d) - v* = 0, where,
Po(6) = (61 — 02)(d5 — 06) — (62 — 03)(04 — 5)
p1(8) = (81 — 62) (55 — &) + (07 — 63)(J5 — d)
— (05 = 05) (04 — 05) — (82 — 03)(5] — &)
p2(8) = (67 — 83) (05 — 05) — (85 — 63)(0F — 3) -
Next, by the definition of «y, p;(d) = 0 for i = 0,1,2. po(d) = 0 implies that,

(61— 02)(d5 — 06) = (2 — 03)(64 — J5) # 0, (6)

where the inequality follows since the coordinates of each of the vectors (41, d2,d3) and
(81,05, 06) are distinct. Substituting (6]) in p2(d) = 0 and p1(8) = 0 gives,

(01 + 02)(95 + d6) = (92 + 63) (04 + 05) (7)
and
01+ 06 = 03 + 04 , (8)

respectively. Summing @ and and as the characteristic is different than 2 we get
that,
d5(01 — 03) = 62(04 — dg) ,
which with (8)) implies that d, = d5. Plugging it in (7)), and taking (8)) into consideration,
we get that,
8106 = 0304 . (9)
By and (9), we get that {d,06} and {d3,d,} are the solutions to the quadratic
equation x? — (83 + d4)x + 9304 = 0, and therefore {d;,d6} = {03,084}, which as before
leads to a contradiction. O
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