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Abstract

This paper presents two repair schemes for low-rate Reed-Solomon (RS) codes over prime
fields that can repair any node by downloading a constant number of bits from each surviving
node. The total bandwidth resulting from these schemes is greater than that incurred during
trivial repair; however, this is particularly relevant in the context of leakage-resilient secret
sharing. In that framework, our results provide attacks showing that k-out-of-n Shamir’s
Secret Sharing over prime fields for small k is not leakage-resilient, even when the parties leak
only a constant number of bits. To the best of our knowledge, these are the first such attacks.

Our results are derived from a novel connection between exponential sums and the repair of
RS codes. Specifically, we establish that non-trivial bounds on certain exponential sums imply
the existence of explicit nonlinear repair schemes for RS codes over prime fields.
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1 Introduction

Reed-Solomon (RS) codes are a widely-used family of codes, both in theory and in practice. Among
their many applications, RS codes are utilized in distributed storage systems, as evidenced in
systems like Facebook, IBM, Google, etc. (refer to Table 1 in [5]). In such systems, a large file
is encoded using an erasure-correcting code and then distributed across multiple nodes. Upon the
failure of a node, it is desirable to efficiently set up a replacement node using information from the
remaining nodes. In this work, we focus on the repair bandwidth—the total amount of information
downloaded—as our metric of efficiency. The challenge of recovering a failed node with minimal
repair bandwidth was first addressed in the seminal paper by Dimakis et al. [4] and has since been
a significant topic of research.

We begin by defining RS codes.

Definition 1.1. Let α1, α2, . . . , αn be distinct points of the finite field Fq of order q. For k < n the
[n, k]q RS code defined by the evaluation set {α1, . . . , αn} is the set of codewords

{(f(α1), . . . , f(αn)) | f ∈ Fq[x],deg f < k} .

When n = q, the resulting code is called a full-length RS code.

When the code used in the storage system is an RS code, the repair problem can be viewed
as a variation of the standard polynomial interpolation problem: Repairing, say, the ith node, is
equivalent to recovering an evaluation f(αi) using minimal information from the evaluations f(αj)
for j ̸= i. Formally, a repair scheme for an [n, k]q RS code with evaluation points α1, . . . , αn consists
of functions τj : Fq → {0, 1}m for each j ̸= i; and a repair function G : {0, 1}m×(n−1) × [n] → Fq,
for some parameter m. We note that the function τj , G may depend on the identity of the failed
node i and should perhaps be called τj,i and Gi respectively; however, for the same of notational
clarity, we omit the i subscript.

For a failed node i ∈ [n], and any polynomial f of degree less than k (representing the stored
data), each surviving node j ̸= i sends a message τj(f(αj)). The repair scheme then takes in the
messages τj(f(αj)), along with i, and outputs the missing information f(αi) using G. Our goal is
to minimize m, the number of bits sent by each node.1

Via standard polynomial interpolation, it is clear that any k values of f(αj) suffice to recover
the polynomial f , and in particular, to recover f(αi). This requires k log2(q) bits of information;
we refer to this as trivial repair. However, as was shown in a line of work including [26, 9, 28, 3], it
is possible to do better! That is, it is possible to recover f(αi) using strictly less than k log(q) bits
from the other nodes!

1.1 Repairing Reed-Solomon Codes over Prime Fields

All of the known RS repair schemes but the one in [3] require that the underlying field be an
extension field. In contrast, our work focuses on prime fields. Our main motivation stems from
applications in secret sharing.

1We note that traditionally, the definition of a repair scheme permits contacting only a subset of the nodes, with
each node potentially sending varying amounts of information. In the definition provided above, we assume the
scenario where all surviving nodes transmit the same amount of information. Later, we will relax this definition to
allow for some of the surviving nodes to abstain from sending any information.
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RS Code Bandwidth per node Remarks

[3, Theorem 3.3] [n, 2]p
log(p)
n−2 +On(1) Non-explicit construction.

[3, Theorem 4.3] [n, k]p
log(p)
n−k +On(1) Repair only possible for

a particular failed node
(rather than any failed
node)2 using all the re-
maining nodes.

Theorem 3.3 [pδ, 3]p 3 (ln ln p)
1
3

(ln p)
2
3

≤ δ ≤ 1
2

Theorem 4.5 [p,ΘB(
√
p)]p B ≥ 3 Recovers the entire poly-

nomial

Table 1: Our result compared to [3]. If not stated in the Remarks column, all of the results
presented are explicit constructions, and all the results give repair schemes that repair any single
failed node using all the remaining nodes. For all results, p is a sufficiently large prime. For the
results in [3], n and k are assumed to be constants relative to p.

In secret sharing, the well-known Shamir’s secret sharing scheme (Shamir’s SSS) is analogous
to RS codes. Informally speaking (see Section 1.3 for more details), repair schemes for RS codes
in which every node transmits a small number of bits are equivalent to attacks on Shamir’s SSSs
when the parties may each leak a small amount of adversarially selected information about their
shares. In essence, a repair scheme for an RS code implies that an instance of Shamir’s SSS is not
leakage-resilient.

Since the schemes of [26, 9, 28] and others require extension fields, a natural hope for constructing
Shamir’s SSSs that are leakage-resilient is to work over prime fields, and indeed several works [1,
21, 18, 19, 14] have shown that, when the dimension k of the code is large, Ω(n), Shamir’s SSS over
prime fields is leakage resilient. In particular, their results imply that for any constant m, there is
some constant α ∈ (0, 1) so that any [n, k]p RS code over a prime field Fp with k ≥ αn does not
admit a repair scheme that downloads m bits from each surviving node (see Theorem 1.2).

On the other hand, [3] showed the existence of asymptotically optimal repair schemes for RS
codes of dimension k = 2 over sufficiently large prime fields Fp. In their work, each party leaks a
non-constant number of bits, specifically, m = 1

n−2 log(p)+On(1) bits (see Table 1 for their results
for larger k). Our results continue the line of work initiated by [3]. We make progress by presenting
schemes where each node transmits a constant number of bits, that is, m = O(1); equivalently, for
Shamir’s SSS, each party leaks a constant number of bits. Therefore, our results have implications
both for attacks on Shamir’s SSS and for distributed storage systems.

1.2 Our Results

In this paper, we present two schemes where every node of an RS code transmits a constant number
of bits. Both schemes are explicit, meaning that the functions τj computed by the nodes as well
as the reconstruction function G are explicitly defined. It is noteworthy that the first scheme is a

2This is achieved by puncturing the code in [3, Theorem 4.3].
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repair scheme, while the second scheme not only enables the repair of a failed node but is, in fact,
a decoding scheme that facilitates the recovery of the original codeword.

This latter point might raise some red flags for the reader familiar with regenerating codes, as
it implies that the scheme downloads enough information to recover the entire codeword, while the
goal in regenerating codes is to generally download less information than that. In fact, both of our
schemes download more information than k · log(p) bits, the amount required to recover the entire
codeword.

The fact that our schemes have such high download costs means that they are not competitive
with the “trivial” repair scheme (which downloads log(p) bits from each of k nodes) if one cares
only about total bandwidth. However, our schemes are useful in settings where each node can only
transmit very few bits; in such a setting, the trivial repair is not an option. This could be the case
in distributed storage models (e.g., in a model where each link can only transmit a few bits). It is
also the case in the model of leakage-resilient secret sharing. In particular, our results give attacks
on Shamir’s SSSs over prime fields, where each leaking party need only send a constant number of
bits. To the best of our knowledge, these are the first such attacks with a constant number of bits
per leaking party.

With that in mind, we present our two main results below. Throughout this paper, let p
be a prime number. We proceed to present our first result: a repair scheme for an RS code of
dimension 3).

Theorem (informal, see Theorem 3.3). For exp
(
(ln p)2/3(ln ln p)1/3

)
≤ n ≤ √

p, there exists an
[n, 3]p RS code where any node can be repaired by downloading three bits from each of the n − 1
remaining nodes.

Our second result is a decoding scheme for a full-length RS code, which enables the recovery
of the original codeword using a constant number of bits from a subset of the nodes. This implies
that not all nodes are required to participate in the decoding process. We prove the following.

Theorem (informal, see Theorem 4.5). Let B ≥ 3 be an integer. The full length [p, k]p RS
code admits a decoding scheme by downloading B bits from any p − m nodes where k + m ≤
cos

(
2π
2B

+ 2π
p

)√
p.

1.3 Related Work

Low-bandwidth repair for distributed storage. As mentioned above, the low-bandwidth
repair problem was introduced in [4], and since then there have been many code constructions and
repair schemes aiming at optimal repair, for example [6, 7, 23, 27, 29, 24, 30, 31, 8]. The study of
repairing Reed-Solomon codes was introduced in [26], and the works [9, 28], among others, have
constructed repair schemes for RS codes over extension fields with total bandwidth that is much
smaller than the trivial bandwidth; in particular, the work [28] showed how to construct RS codes
that achieve the cut-set bound proved in [4], i.e., with the minimal possible bandwidth.

Our work focuses on prime fields. To the best of our knowledge, the only work that gives positive
results for repairing RS codes over prime fields is [3], discussed above and summarized in Table 1.

Leakage-Resilient Secret Sharing. Shamir’s SSS, which was first introduced in [25], is a funda-
mental cryptographic primitive that provides a secure method to distribute a secret among different
parties, so that any k can recover the secret but no k − 1 learn anything about it. Formally, given
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a secret s ∈ F, a reconstruction threshold k > 0 and a number of parties n, Shamir’s SSS works as
follows. A dealer chooses a random polynomial f of degree at most k − 1, so that f(0) = s. Then
party i is given the share f(αi), where α1, . . . , αn ∈ F are distinct, pre-selected points. It is easy
to verify that any k parties can reconstruct the polynomial f(x) and therefore recover the secret
f(0) = s, while the shares of any k − 1 parties reveal no information about the secret.

Benhamouda, Degwekar, Ishai, and Rabin [1] considered the question of local leakage-resilience
of secret sharing schemes over prime fields and, in particular, Shamir’s SSS over prime fields. In
this setting, the model is that each party i may adversarially leak some function τi(f(αi)) ∈ {0, 1}m
of their share, for some (small) m. A scheme is m-local leakage resilient if for any two secrets s, s′,
the total variation distance between the leaked messages under s and the leaked messages under s′

is negligible. The work of Benhamouda et al. established the following.

Theorem 1.2. [1, Corollary 4.12] Let m be a constant positive integer and let n go to infinity.
There exists an αm < 1, for which Shamir’s SSS with n players and threshold k = αmn is m-local
leakage resilient.

We also note that Benhamouda et al. [1] phrased a conjecture that for large enough n, Shamir’s
SSS with threshold αn is 1-bit local leakage resilient for any constant α > 0. Despite considerable
progress [18, 19, 14], this conjecture is still open.

Given Theorem 1.2, it is not feasible to repair RS codes over prime fields with a rate arbitrarily
close to 1 while only leaking a constant number of bits from each party. In [21, Lemma 2], it is
shown that Shamir’s SSS are not leakage resilient for sublinear threshold. Specifically,

Lemma 1.3. [21, Lemma 2] Let p be the smallest prime larger than n. Then, for any constant
c ∈ (0, 1) and large enough n, it holds that Shamir’s SSS over Fp with n players and threshold
k = cn/ log n is not 1-local leakage resilient.

However, prior to this work, no explicit local attacks were known. By explicit attacks, we mean
explicit small image functions that adversary applies on the shares. Our results explicit state such
functions and we also show that adversary not only gains significant insight into the secret but, in
fact, can completely recover it.

1.4 Organization

The preliminaries are given Section 2. The repair scheme is given in Section 3 and the decoding
scheme is given in Section 4. In Section 5, we summarize and present some open questions.

2 Preliminaries

We begin with some needed notations. For integers a < b let [a, b] = {a, a + 1, . . . , b} and [a] =
{1, 2, . . . , a}. An arithmetic progression in some field F of length N and a step s ∈ F is a set of the
form {a, a+ s, . . . , a+ (N − 1)s} for some a ∈ F. Throughout, let p ̸= 2 be a prime number and Fp

be the finite field of size p. We will realize Fp as the set [−p−1
2 , p−1

2 ], where each element of Fp is

viewed as an element of [−p−1
2 , p−1

2 ], and addition and multiplication are computed modulo p.
For an element γ ∈ Fp let γ · A := {γ · a : a ∈ A} be all the possible products of γ with

elements in A, hence, the notation α ∈ γ · [−t, t] for α, γ, t ∈ Fp implies that there exists j ∈ [−t, t]
for which α ≡ γ · j mod p. Finally, let ep (x) : Fp → C be the standard additive character of

Fp, ep (x) := exp
(

2π
√
−1

p · x
)
.
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2.1 Exponential sum bounds

Exponential sums have been a subject of extensive study in number theory and have found nu-
merous applications in coding theory. In this work, we explore another application of these sums.
Specifically, we demonstrate how bounds such as the Weil bound and those on Kloosterman sums
can be leveraged to develop repair schemes for Reed-Solomon (RS) codes over prime fields, where
each node transmits a constant number of bits. In this section, we introduce several key bounds,
beginning with the Weil bound.

Theorem 2.1. [17, Theorem 5.38] Let f ∈ Fp[X] be a non-constant polynomial of degree at most
k. It holds that ∣∣∣∣∣∣

∑
α∈Fp

ep (f(α))

∣∣∣∣∣∣ ≤ (k − 1) · √p .

As one can see, the bound is non-trivial only when deg(f) ≤ √
p. The Weil bound has applica-

tions throughout mathematics, theoretical computer science, and information theory. Motivated by
these applications, there are extensions to the Weil bound that improve the bound in certain classes
of polynomials, see e.g., [2, 13]. Another important family of exponential sums are Kloosterman
sums, which first appeared in [15] are sums of the form∣∣∣∣∣∑

α∈A

ep

( a

α
+ bα

)∣∣∣∣∣ ,

where A ⊆ F∗
p and gcd(a, p) ̸= 0. Bounds on these sums also have broad applications, mainly in

analytical number theory [10, 12], but also in coding theory [11, 20, 32].

2.2 Repair Schemes via Arithmetic Progressions

In this section, we revisit the framework established in [3] that utilizes arithmetic progressions to
construct repair schemes. For simplicity, we assume the failed node is the nth one in this discussion,
though this assumption is relaxed in our formal treatment.

A repair scheme for the nth node consists of n − 1 functions τi : Fp → [s] and a function
G : [s]n−1 → Fp. These functions satisfy the following condition for any codeword (c1, . . . , cn) ∈ C:

G(τ1(c1), . . . , τn−1(cn−1)) = cn. (1)

In the event of a failure at the nth node, each ith node (holding the symbol ci) computes τi(ci) and
transmits it, requiring ⌈log s⌉ bits. The repair process is completed upon receiving the n−1 messages
τi(ci), with the nth symbol reconstructed using (1). The total bandwidth of the repair scheme,
defined as the aggregate number of bits transmitted during the repair, amounts to (n− 1)⌈log(s)⌉
bits. This framework is applicable to any repair scheme, with the challenge primarily lying in the
identification of suitable functions τi. These functions must be sufficiently informative to allow the
collective computation of the symbol cn from the information about ci. However, they should not
be excessively informative to ensure that the size of the image, denoted by s, remains small. This
balance is crucial for minimizing the total bandwidth used in the repair process.

To define the functions τi, we employ partitions in the following manner. It is important to
note that each function τi induces a partition {τ−1

i (a) : a ∈ [s]} of Fp. Conversely, any partition of
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Fp into s subsets can define a function, where the function value at a point a ∈ Fp corresponds to
the index of the subset containing a. Therefore, in our subsequent discussion, we will specify the
functions τi by constructing partitions of Fp into s subsets, utilizing arithmetic progressions.

The work in [3] demonstrates the use of arithmetic progressions for creating partitions that lead
to efficient nonlinear repair schemes for RS codes over prime fields. The specifics of this construction
are detailed next.

Fix an integer 1 ≤ t ≤ p, set s = ⌈p/t⌉, and define A0, . . . , As−1 as the partition of Fp into s
arithmetic progressions of length t and step 1:

Aj =

{
{jt, jt+ 1, . . . , jt+ t− 1} for 0 ≤ j ≤ s− 2,

{(s− 1)t, . . . , p− 1} for j = s− 1.
(2)

For a nonzero γ ∈ Fp, it can be verified that γ · A0, . . . , γ · As−1 also forms a partition of Fp into
arithmetic progressions of length t (except for the last set γ · As−1), with step γ. Each function
τi, for i ∈ [n − 1], in the repair scheme is defined by a partition γi · A0, . . . , γi · As−1, with an
appropriately chosen γi. It is important to note that distinct i’s will have distinct γi’s, ensuring the
uniqueness of each τi. As observed in [3], these partitions defined by the γi’s lead to a valid repair
scheme if and only if for any two codewords c, c′ ∈ C that belong to the same set in all of the n− 1
different partitions (i.e., ci, c

′
i ∈ γi ·Aji for all i ∈ [n− 1]), it holds that cn = c′n.

In [3], the authors provided a simple yet sufficient condition for a linear code to have a valid
repair scheme. We adapt their condition specifically for RS codes, which is the primary focus of
this paper.

Proposition 2.2. [3, Proposition 2.2] Consider an [n, k]p RS code defined with the evaluation
points α1, . . . , αn. Let ℓ ∈ [n] be the index of the failed node. Let t < p be an integer and for i ∈
[n]\{ℓ}, let γi ∈ F∗

p. If for any polynomial f(x) ∈ Fp[x] of degree less than k with f(αi) ∈ γi · [−t, t]
for all i ∈ [n] \ {ℓ}, it holds that f(αℓ) = 0, then, the γi’s define a valid repair scheme for the ℓth
node with a total bandwidth of (n− 1) · log ⌈p/t⌉ bits.

In [3], the authors concentrated on the regime where t = Θ
(
p1−

1
n−k+1

)
, with n and k being

constants relative to p. In this setting, each surviving node transmits Θ(log(p)) bits. Since p is
considered to be growing in these results, the number of bits transmitted is not constant.

In contrast, our work explores the regime where t = Θ(p). In this scenario, every node sends
a constant number of bits, specifically log⌈p/t⌉ bits, to the replacement node. This approach
significantly differs from the previous work by reducing the transmission to a constant bit size,
regardless of the growth of p.

3 Repair schemes using bounds on Kloosterman sums

In this section, we present our scheme for repairing single failed nodes for RS codes over prime
fields. We shall extensively use the following simple lemma.

Lemma 3.1. Let a1, . . . , an, t ∈ Fp such that ai ∈ [−t, t] for all i ∈ [n]. Then, |
∑n

i=1 ep (ai)| ≥
n · cos

(
2πt
p

)
.
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Proof. Let Re{x} denote the real part of the complex number x, then∣∣∣∣∣
n∑

i=1

ep (ai)

∣∣∣∣∣ ≥ Re

{
n∑

i=1

ep (ai)

}
=

n∑
i=1

Re{ep (ai)} ≥ n · cos
(
2πt

p

)
,

where the second inequality follows since for all i ∈ [n], we have ai ∈ [−t, t].

The next theorem due to Korolev establishes a nontrivial upper on short Kloosterman sums.

Theorem 3.2. [16, Theorems 2, 3] Let p be a prime and let n be an integer such that

e(ln p)2/3·(ln ln p)1/3 ≤ n ≤ √
p .

Let D = (lnn)3/2

(ln p)(ln ln p)2 . Then, it holds

1. For any a such that gcd(a, p) = 1,∣∣∣∣∣∣
∑

1≤ν≤n

ep

(a
ν

)∣∣∣∣∣∣ ≤ n · 260 lnD
D

= o(n) .

2. For any a, b such that gcd(ab, p) = 1∣∣∣∣∣∣
∑

1≤ν≤n

ep

(a
ν
+ bν

)∣∣∣∣∣∣ ≤ n · 222 lnD
D3/4

= o(n) .

Next, we present our first repair scheme that is capable of repairing every node in an [n, 3]p RS
code for n that is small compared to p.

Theorem 3.3. Let p be a large enough prime and n be an integer such that

2 exp
(
(ln p)2/3 · (ln ln p)1/3

)
≤ n ≤ √

p .

Then, the [n + 1, 3]p RS code defined by the evaluation points αi = i for i ∈ [0, n] admits a repair
of any node by downloading three bits from all the other nodes.

Proof. Set t := ⌈p/8⌉ and assume that we wish to repair the ℓth node. We will prove that the
condition in Proposition 2.2 holds with γi = i − ℓ for every i ∈ [0, n] \ {ℓ}. Assume towards a
contradiction that it does not hold. Thus, there exists a polynomial f(x) = f2(x− ℓ)2+ f1(x− ℓ)+
f0 ∈ Fp[x] such that f(i) ∈ (i− ℓ) · [−t, t] for all i ∈ [0, n] \ {ℓ}, but f(ℓ) ̸= 0. Define,

S :=

∣∣∣∣∣∣∣
n∑

i=0
i̸=ℓ

ep

(
f(i)

i− ℓ

)∣∣∣∣∣∣∣
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and note that by Lemma 3.1 and our choice of t, it holds that S ≥ n · cos
(

2πt
p

)
> 0.7n. On the

other hand,

S =

∣∣∣∣∣∣∣
n∑

i=0
i ̸=ℓ

ep

(
f2 · (i− ℓ) + f1 +

f0
i− ℓ

)∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
n∑

i=0
i ̸=ℓ

ep

(
f2 · (i− ℓ) +

f0
i− ℓ

)∣∣∣∣∣∣∣
=

∣∣∣∣∣
ℓ∑

i=1

ep

(
−f2 · i−

f0
i

)
+

n−ℓ∑
i=1

ep

(
f2 · i+

f0
i

)∣∣∣∣∣
≤

∣∣∣∣∣
ℓ∑

i=1

ep

(
f2 · i+

f0
i

)∣∣∣∣∣+
∣∣∣∣∣
n−ℓ∑
i=1

ep

(
f2 · i+

f0
i

)∣∣∣∣∣ .
Clearly, max(ℓ, n − ℓ) ≥ n/2. Assume without loss of generality that ℓ ≥ n/2 and let S′ =∣∣∣∑ℓ

i=1 ep

(
f2 · i+ f0

i

)∣∣∣.
Recall that by our assumption f(ℓ) = f0 ̸= 0, which implies that gcd(f0, p) = 1. Consider

the following two options. First, if f2 ̸= 0 then gcd(f0f2, p) = 1 and by the second bound in
Theorem 3.2 S′ = o(n). Second, if f2 = 0 then by the first bound in Theorem 3.2 S′ = o(n). In
either case, we conclude that S ≤ 0.5n+ o(n) and we arrive at a contradiction for large enough p,
which implies a large enough n.

Lastly, the claim about the bandwidth follows by noting that by Proposition 2.2, each node
sends

⌈
log

(⌈
p
t

⌉)⌉
≤ ⌈log (8)⌉ = 3 bits.

Remark 3.4. From a cryptographic perspective, Theorem 3.3 provides an explicit leakage attack
on the secret in a 3-out-of-n Shamir’s Secret Sharing Scheme (SSS) over prime fields. This attack
is significant as it requires leaking as little as 3 bits from each share to completely reveal the secret.
Specifically, we construct deterministic leakage functions that enable the complete recovery of the
secret value, f(0). To the best of our knowledge, the only other known attacks on Shamir’s SSS are
probabilistic in nature, where the adversary randomly chooses the leakage functions [21]. The above
result therefore shows a significant vulnerability of Shamir’s SSS to targeted attacks.

Remark 3.5. In this section, we construct a repair scheme that downloads a constant number
of bits from any node. The total bandwidth is larger than k · log(p), the amount of information
needed to learn the polynomial. One might ask, does the information received from the nodes tell us
the entire polynomial? We would like to stress that this is not the case here. We show that there
are two distinct polynomials on which the scheme transmits the same information. Consider the
polynomials f(x) = x and g(x) = 2x and assume that we want to repair the node 0. A node that
stores f(α) or g(α) will transmits the same value, since f(α), g(α) ∈ α · [0, t− 1] for every α ∈ F∗

p.
Thus, we cannot distinguish between these two polynomials upon receiving the information from the
nodes.
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4 Repair scheme using the Weil bound

In Section 3, we developed a repair scheme leveraging bounds on Kloosterman sums. This section
introduces a new scheme for full-length RS codes, utilizing the Weil bound. This scheme can also
repair any node by downloading a constant number of bits from the majority of the other functional
nodes. Remarkably, it facilitates the recovery of the entire polynomial (codeword), and not just an
individual node.

To recover the entire polynomial, it is necessary to download at least k log(p) bits in total from
the nodes. A straightforward approach would be to retrieve the symbols of any k nodes and then
solve the classical interpolation problem to reconstruct the polynomial. Our proposed scheme,
however, involves downloading a constant number of bits from more than k nodes. We demonstrate
that this information is sufficient to deduce the entire polynomial.

In order to show that the scheme indeed recovers the entire polynomial, we will first introduce
some definitions and later present a stronger condition than the one presented in Proposition 2.2.

A decoding scheme for a code C consists of n functions τi : Fp → A, where A is some set,
and a function G : An → Fn

p . This scheme must satisfy the condition that for any codeword
(c1, . . . , cn) ∈ C,

G(τ1(c1), . . . , τn(cn)) = (c1, . . . , cn). (3)

The following observation provides a condition for the existence of a decoding scheme.

Observation 4.1. Let C ⊆ Fn
p be a code. A set of n functions τi : Fp → A define a valid decoding

scheme, (i.e., there exists a function G satisfying (3)) if and only if the mapping

c ∈ C 7→ (τ1(c1), . . . , τn(cn))

is injective.

To present the trivial approach suggested above to retrieve the polynomial as a decoding scheme
of an [n, k] RS code, let A = Fp and set, say the first k functions, τ1, . . . , τk : Fp → Fp, as identity
functions, and the remaining n− k functions, τi, as constant zero functions.

Our goal is to construct decoding schemes non-explicitly and explicitly from a set of n functions
where each function outputs only a constant number of bits. We begin with a non-explicit decoding
scheme derived by a simple application of the probabilistic method, the proof of which is relegated
to Appendix A.1. We then proceed with the explicit scheme derived from the Weil bound.

Proposition 4.2. Consider an [n, k] RS code over Fp with k < (n+1) log(s)
2 log(p)+log(s) , for some integer s.

Assume further that the code is defined by the evaluation points α1, . . . , αn ∈ Fp. Then, there are
n functions τ1, . . . , τn : Fp → [s] such that for any f ∈ Fp[x] of degree less than k, the mapping
f 7→ (τ1(f(α1)), . . . , τn(f(αn))) is injective and therefore it is sufficient to retrieve f from it.

Proposition 4.2 shows that for a constant s, any [n, k]p RS code with k = O(n/ log(p)) has a
decoding scheme where the functions τi have a constant-size image. This means it is feasible to
recover (decode) any polynomial of degree less than k by transmitting a constant number of bits
from each node. However, the result is existential and not explicit. On the other hand, the following
simple claim shows that for k which is slightly larger than the bound in Proposition 4.2, a decoding
scheme does not exist for an [n, k]p RS code.

Claim 4.3. Consider an [n, k] RS code over Fp with k > n log s
log p . Then, for any n functions

τ1, . . . , τn : Fp → [s], the mapping c ∈ C → (τ1(c1), . . . , τn(cn)) is not injective.
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Proof. There are pk codewords and ns vectors [s]n. Thus, for k > n log s
log p , by the pigeonhole principle,

there are two codewords that map to the same element under τ1, . . . , τn.

By combining the above results, we conclude that the maximum dimension of RS codes that
permits a decoding scheme with a constant number of bits from each node is k = Θ(n/ log p). Our
next result, while falling short of this benchmark, presents an explicit decoding scheme. Specifically,
we introduce an explicit decoding scheme for a full-length RS code, i.e., of length p with k = O(

√
p).

This dimension is smaller than the maximum possible dimension which is Ω(p/ log p) for a full-length
RS code. An intriguing open question is the construction of an explicit decoding scheme for a full-
length RS code with dimension Ω(p/ log p) that requires only a constant number of bits from each
node.

As in the case of the repair schemes, we construct the function τi by partitioning Fp into
arithmetic progressions with step γi ∈ Fp. The following proposition provides a condition similar
to that in Proposition 2.2 for the functions τi defined by the γi’s to define a valid decoding scheme.
Furthermore, we allow also that some of the nodes do not send any information; equivalently, the
function they compute on their data is a constant function.

Proposition 4.4. Consider an [n, k]p RS code defined by the evaluation points α1, . . . , αn. Let
t < p be an integer, M ⊂ [n] of size m, and γi, i ∈ [n]\M , be nonzero elements of Fp. If the only
polynomial f ∈ Fp[x] of degree less than k for which f(αi) ∈ γi[−t, t] for all i ∈ [n]\M is the zero
polynomial, then the γi’s define a valid decoding scheme with a total bandwidth of (n−m) · log

(
⌈p
t ⌉
)

bits.

Note that in the scheme in Proposition 4.4, the nodes with indices i ∈ M are the nodes that do
not send any information.

Proof. Let s = ⌈p
t ⌉ and define the sets Aj , 0 ≤ j ≤ s− 1, as in (2). For each i ∈ [n]\M , define the

function τi according to the partition γi ·A0, . . . , γi ·As−1, i.e., τi(a) = j if and only if a ∈ γi ·Aj .
By Observation 4.1, it suffices to show that the mapping for c ∈ C, c 7→ (τ1(c1), . . . , τn(cn)), is

injective. Let c, c′ ∈ C be two codewords that agree on the n values τi(c) = τi(c
′) for all i ∈ [n]\M .

Then, c − c′ is a codeword such that its ith symbol belongs to the set γi · [−t, t] for all i ∈ [n].
Therefore, by the condition, c − c′ must be the zero codeword, i.e., c = c′. The claim about the
bandwidth follows since each partition consists of exactly s sets.

Next, we introduce our decoding scheme that utilizes the Weil bound. The scheme facilitates
decoding even in scenarios where a subset of the nodes does not transmit any information.

Theorem 4.5. Let B ≥ 3 be a positive integer. Let k and m be positive integers and p be a prime

such that k+m ≤ cos
(

2π
2B

+ 2π
p

)√
p. Then, the full-length [p, k]p RS code admits a decoding scheme

by downloading B bits from any p−m nodes.

Before delving into the proof of the theorem, it is important to note the impact of increasing B,
the number of bits transmitted by the nodes. By transmitting more information, we can increase
the sum of k+m. This implies that the decoding scheme can be adapted either to RS codes with a
larger dimension or to scenarios where a greater number of nodes do not transmit any information.

Proof. Set t :=
⌈
p/2B

⌉
and assume that the nodes ℓ1, . . . , ℓm ∈ Fp do not transmit any information

during the scheme. The result will follow by showing that the condition in Proposition 4.4 holds
with γi =

∏m
j=1(i − ℓj)

−1 for all i ∈ Fp \ {ℓ1, . . . , ℓm}. Assume towards a contradiction that
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it does not hold. Then, there exists a nonzero polynomial f(x) =
∑k−1

j=0 ajx
j such that f(i) ∈(∏m

j=1(i− ℓj)
−1

)
[−t, t] for every i ∈ Fp \ {ℓ1, . . . , ℓm}. Thus, by Lemma 3.1∣∣∣∣∣∣
∑
i∈Fp

ep

f(i) ·
m∏
j=1

(i− ℓj)

∣∣∣∣∣∣ ≥ p cos(2πt/p) > p cos

(
2π

2B
+

2π

p

)
.

where the last inequality follows 2πt/p ≤ 2π
2B

+ 2π
p < π. On the other hand, by assumption f ̸≡ 0,

and thus f(x) ·
∏m

j=1(x− ℓj) is a non-constant polynomial of degree at most k+m−1 and therefore
by the Weil bound (Theorem 2.1)∣∣∣∣∣∣

∑
i∈Fp

ep

f(i) ·
m∏
j=1

(i− ℓj)

∣∣∣∣∣∣ ≤ (k +m− 1)
√
p,

and we arrive at a contradiction by the choice of k and m. The claim on the bandwidth follows
from Proposition 4.4.

Remark 4.6. We note that the decoding scheme presented in Theorem 4.5 is in particular, also a
repair scheme. Indeed, any node of the m nodes that does not send any information can be viewed
as the failed node.

Remark 4.7. In Theorem 4.5, we utilized the classical Weil bound on exponential sums, which
provides an upper bound for complete sums, i.e., sums that range over all elements in the prime
field. However, it is important to note that there are also upper bounds for incomplete sums (see,
for example, [22] that bounds sums ranging over small subgroups). These bounds on incomplete
sums, can be employed to construct decoding schemes for RS.

Recall that Theorem 1.2 implies that repairing the 0th node in an RS code is not feasible when
the rate is sufficiently high. Specifically, for any positive integer m, there exists a constant αm such
that an [p, αmp]p RS code does not admit a repair of the 0th node using m bits of information from
each of the other nodes.

On the other hand, Theorem 4.5 allows for the repair of the 0th node in a full-length RS code
with dimension O(

√
p). An interesting question arises: how far can one push the dimension of the

code while using this scheme? In other words, what is the largest dimension of a full-length RS code
that permits decoding (or repairing) via the scheme given in Theorem 4.5? The following example
illustrates some of the limitations of this scheme.

Example. Consider the [p, p−1
2 ]p RS code over Fp. Our goal is to show that the decoding scheme

given in Theorem 4.5 is not valid, even if all of the nodes except the 0th send almost all their
information. Consider the codeword defined by the polynomial

f(x) = −

p−3
2∑

i=0

(x+ 1)i =
1− (x+ 1)

p−1
2

x
,

of degree p−3
2 . Since we assume that all the nodes send their information except for the 0th node,

then by the definition of γi in the proof of Theorem 4.5, we have that γi = 1/i for each i ∈ F∗
p.
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Next, let t = 3 and define the function τi as in Section 2.2. Since t = 3, the information τi(f(i))
received from the ith node suffices to determine f(i) up to 3 possible values. Furthermore, τi is
defined by the partition γiAj , j = 0, . . . , ⌊p/3⌋ of Fp as in (2). Since f(i) ∈ i−1 · {0, 1, 2} for every
i ∈ F∗

p, we have τi(f(i)) = 0. On the other hand, for g(x) ≡ 0, also τi(g(i)) = 0 for all i ∈ F∗
p and

g(0) = 0 ̸= −p−1
2 = f(0). We conclude that the received information does not suffice to recover the

value of f at 0, let alone decode f .

5 Summary and Open Problems

This paper extends the work initiated in [3], focusing on the repair of RS codes over prime fields.
We advance this line of work by developing nonlinear repair schemes for RS codes, where each node
transmits only a constant number of bits. While the total bandwidth of our schemes exceeds that of
the trivial repair scheme, they offer a significant advantage in scenarios where each node is limited
in power or communication and is thus constrained to transmit only a constant number of bits—a
condition under which the trivial scheme is not feasible.

Furthermore, we demonstrate that our schemes can be interpreted as explicit local leakage
attacks on Shamir’s SSS. To our knowledge, these are the first instances of such explicit attacks.

The main contribution of this work is establishing connections between bounds on exponential
sums and the problem of repairing RS codes. By applying some known bounds, we obtain results
that imply both a repair and a decoding scheme for certain RS codes.

We conclude with open questions for future research:

1. Develop efficient algorithms to compute the repair function G as defined in (1), i.e., efficiently
compute the lost data upon receiving inputs from the functioning nodes.

2. Determine the maximal rate of an RS code over prime fields for which there is a repair scheme
that downloads a constant number of bits from each node. Constructing such schemes remains
an interesting open question.
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A Appendix

A.1 Proof of Proposition 4.2

For the reader’s convenience we restate the proposition.

Proposition A.1. Consider an [n, k] RS code over Fp with k < (n+1) log(s)
2 log(p)+log(s) , for some integer s.

Assume further that the code is defined by the evaluation points α1, . . . , αn ∈ Fp. Then, there are
n functions τ1, . . . , τn : Fp → [s] such that for any f ∈ Fp[x] of degree less than k, the mapping
f 7→ (τ1(f(α1)), . . . , τn(f(αn))) is injective and therefore it is sufficient to retrieve f from it.
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Before delving into the proof of Proposition 4.2, it is important to note its resemblance to
the proof of Theorem 2 in [21]. Both proofs employ a similar strategy: they randomly select the
functions τi and then apply the union bound. However, a key distinction lies in the objective of the
recovery process. While our approach aims to recover the entire polynomial, the focus of Theorem
2 in [21] is solely on recovering the secret, i.e., the value of the polynomial at zero.

Proof. Pick the functions τi : Fp → [s] uniformly at random. Namely, for each i ∈ [n] and α ∈ Fp,
τi(α) is a uniformly distributed random element of [s]. Fix two distinct polynomials f, g of degree
less than k, then it holds that

Pr
τ1,...,τn

[(τ1(f(α1)), . . . , τn(f(αn))) = (τ1(g(α1)), . . . , τn(g(αn)))] =

n∏
i=1

Pr [τi(f(αi)) = τi(g(αi))] .

If f(αi) = g(αi), then necessarily Pr [τi(f(αi)) = τi(g(αi))] = 1, and since f and g are polynomials
of degree less than k they agree on at most k−1 of the αi’s. If f(αi) ̸= g(αi), then by the definition
of τi, we have that Pr [τi(f(αi)) = τi(g(αi))] = 1/s. Thus,

Pr
τ1,...,τn

[(τ1(f(α1)), . . . , τn(f(αn))) = (τ1(g(α1)), . . . , τn(g(αn)))] ≤
(
1

s

)n−k+1

.

Now, by the union bound, the probability that there exist two polynomials f and g of degree
less than k such that (τ1(f(α1)), . . . , τn(f(αn))) = (τ1(g(α1)), . . . , τn(g(αn))) is at most p2k ·
(1/s)n−k+1 < 1 by the choice of k. Thus with positive probablity the required functions τi ex-
ist, and the result follows.
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