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Abstract

We initiate the study of DNA-based distributed storage systems, where information is encoded across
multiple DNA data storage containers to achieve robustness against container failures. In this setting,
data are distributed over M containers, and the objective is to guarantee that the contents of any failed
container can be reliably reconstructed from the surviving ones. Unlike classical distributed storage
systems, DNA data storage containers are fundamentally constrained by sequencing technology, since
each read operation yields the content of a uniformly random sampled strand from the container. Within
this framework, we consider several erasure-correcting codes and analyze the expected recovery time of
the data stored in a failed container. Our results are obtained by analyzing generalized versions of the
classical Coupon Collector’s Problem, which may be of independent interest.
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1 Introduction

Recent advances in DNA-based data storage technologies have positioned DNA as a compelling substrate for
long-term digital archiving, offering density, durability, and longevity far beyond the capabilities of conven-
tional media. As global data generation accelerates at an unprecedented pace, existing storage technologies
such as magnetic disks, solid-state drives, and tapes struggle to meet the demands of scalability, reliability,
and archival lifetime. DNA, by contrast, provides an ultra-dense and chemically stable medium whose in-
formation can persist for thousands of years under modest conditions. These features position DNA-based
storage as a promising solution for the growing archival storage crisis [CGK12,GBCT13,YKGR"16,0AC"18].

A conventional DNA-based data storage system is composed of three main elements: DNA synthesis,
storage containers, and DNA sequencing. First, artificial DNA strands, called oligos, are produced to encode
the user’s data. These strands are then stored in an unordered manner within a storage container, with
each strand present in millions of copies. Finally, DNA sequencing is used to read the stored strands and
transform them into digital sequences, known as reads, which are then decoded to reconstruct the original
user information. In each of these three components, errors might occur, and thus, much attention was given
to designing error-correcting codes for DNA-based storage systems. We refer the reader to the following
survey [SKSY24] that presents the coding challenges in such systems.

In this work, we initiate the study of coding for DNA-based distributed storage systems. We consider a
setting with M DNA storage containers, and our objective is to encode data across these M containers so
that, even if one or more containers fail, the lost information can still be reconstructed from the remaining
containers. The formulation of this problem matches that of standard distributed storage systems. However,
there are a few important differences between our notion of repair and the one adopted in the classical
storage setting.

In a classical distributed storage system, a file is divided into k data fragments and then encoded using
an erasure-correcting code, producing M > k fragments in total, with each fragment stored on a different
one of the M nodes. Since an erasure code is used, repairing a failed node reduces to decoding a single
erasure of a codeword. A central performance metric in traditional distributed storage systems is the repair
bandwidth, which denotes the amount of information downloaded from the remaining nodes to recover the
failed one. The problem of minimizing the repair bandwidth was introduced in the seminal work of Dimakis
et al. [DGW™10] and has since attracted extensive attention, leading to ingenious constructions that achieve
optimal tradeoffs (for a detailed overview, the reader is referred to the survey [RBST22]). We emphasize
that in this model, nodes are allowed to perform arbitrary computations on their stored data and transmit
the resulting outputs.

In DNA-based distributed storage, the process of downloading information from containers is fundamen-
tally different. First, no computation can be performed within a container. Second, reading is carried out
by a sequencer, which we assume samples a strand uniformly at random from the container in each read.
Because each of the n strands is present in the tube in about a million identical copies, all in equal numbers,
drawing a strand uniformly at random from the container is effectively the same as choosing one of the n
distinct strands uniformly at random.

It was observed in [BLSGY24], that this sampling model is deeply connected with the classical coupon
collector’s problem (CCP, for short). In the CCP, there are n distinct coupons, and at each point of
time, the collector picks a coupon uniformly at random from the n coupons, and then returns it. The
task of the collector is to see all the n distinct coupons, and the question is how many rounds it takes.
This problem has been extensively investigated in combinatorics and probability theory; see, for instance,
[ER61,BH97,AR01,KJV07,AD21]. However, the classical problem received many new twists with the new
connection to DNA-based storage systems [BLSGY24, AGY24, GBLRY 24, GMZ24, BEG " 25].

In this paper, we introduce a DNA-based distributed storage system model. We establish a connection
between this model and a generalized coupon collector’s problem involving multiple independent collectors,
each with its own set of coupons to be collected. To the best of our knowledge, this generalized setting has
not been studied previously and may be of independent interest.



1.1 Distributed DNA Storage and Coupon Collector’s Problem

For a positive integer n, let [n] £ {1,...,n}. We consider a distributed storage system with M containers,
each storing n distinct strands. Each container is equipped with its own sequencer, and reads are performed
in parallel: at each time step, one strand is sampled uniformly at random from each functioning container.
When one container fails, our goal is to reconstruct its data from the remaining M — 1 containers, and we
study the expected time required for this recovery.

There could be several reasons for a container to become unavailable. These include physical degradation
or loss of DNA molecules due to chemical decay or handling errors [CGK12,GBCT13, YKGR*16], as well as
failures in the sequencing or library preparation pipeline that render the contents of a container unreadable
despite the DNA remaining intact [OACT18,SKSY24]. At scale, additional failure modes include contami-
nation or mislabeling events that prevent reliable identification of a container’s data [YKGR ™16, 0ACT18].
From a coding-theoretic perspective, such events are naturally modeled as container-level erasures, in direct
analogy to node failures in classical distributed storage systems [DGW 10, RBS™22].

Remark 1. We emphasize that, in practice, each strand is stored in millions of identical copies. For
simplicity, and as an approrimation of this setting, we assume that at any time, each container contains
exactly n distinct strands, from which one strand is sampled uniformly at random, read, and returned.
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Figure 1: An illustration of a DNA-DSS

We begin by formally defining a DNA-based distributed storage system, and then introduce the main
parameter of interest, namely the expected recovery time of a container.

Definition 1 ((n, M, k, |X|) DNA-based distributed storage system (DNA-DSS)). Let n, M, and k be positive
integers and let ¥ be an alphabet. An (n, M, k,|X|) DNA-based distributed storage system (DNA-DSS) is
defined by an injective encoder € : ©F — XM sych that, for every v € =% and every j € [M], the following

condition is satisfied: The j-th column of S & £(v) can be reconstructed from the collection of columns of S
indezed by [M]\ {j}.

Note that this definition is purely mathematical and does not yet refer to DNA-based storage systems.
The relation to DNA-based storage is as follows. Suppose v € 2F represents the data we wish to store and
set S = E(v). For each j € [M], the j-th container stores the n entries of the j-th column of S. Thus,
every container holds n values, corresponding to the n strands within that container. The requirement in
Definition 1 can be rephrased as follows: the data in the failed j-th container can be reconstructed by reading
all the data from the remaining M — 1 containers.



Definition 2 (The expected recovery time of a container). For every j € [M], we define T; as the random
variable representing the time required to recover the j-th container under this model. The expected recovery
time of the j-th container will be denoted by E[T}].

In this paper, we design DNA-DSS using MDS (mazimum distance separable) codes and analyze the
expected recovery time of a failed container. An MDS code of length M and redundancy r is an injective
encoder &€ : YM—" — 2™ guch that any v € XM ~" can be uniquely recovered from any M — r entries of the
codeword E(v). Before presenting our main results, we briefly revisit the classical coupon collector problem.
We shall see that several of our results can be viewed as generalizations of this problem.

The Coupon Collector’s Problem. We give a formal definition of the classical coupon collector
distribution, as well as of the distribution corresponding to the version with ¢ copies.

Definition 3 (Coupon Collector’s distribution). Consider n distinct coupon types, and draw one coupon at
each trial independently and uniformly from these n types. Let X ™ be the number of draws needed to obtain
at least one of each type, and let X ™9 be the number of draws needed to obtain at least £ of each type. We
write X(™ ~ CCP(n) and X9 ~ CCP(n, ().

It is a well-known fact that E[X ()] = n(Inn + v) + O(1), where v = 0.577. .. is the Euler-Mascheroni
constant. (e.g., [MUO5, Section 2.4.1]). In [New60, Theorem 2], it was shown that when ¢ is fixed, we have
E [X(”’g)] =nlnn+({—1)nlnlnn+n-Cp+o(n), and later, in [ER61], it was shown that Cy = v—In((£—1)!).

2 Our Results

MDS codes have the best known rate-erasure correcting tradeoff and are therefore widely studied in classical
distributed storage systems. We likewise study the performance of MDS codes in the DNA-DSS setting.
Our results follow the classical split: first, we consider scalar MDS codes, and then array regenerating MDS
codes. We note, however, that MDS and regenerating codes may not be optimal for minimizing the expected
container recovery time, and we leave this question for future work.

Throughout this paper, we work under the assumption that the number of containers, denoted by M, is
fixed, while the number of distinct strands n tends to infinity. In addition, whenever we use the notation
o(1), it represents a term that goes to 0 as n goes to infinity. Finally, for numbers a,b and ¢, we will denote
by a £ b the interval [a — b,a 4 b] and ¢(a £ b) = ca £ cb.

2.1 The Scalar MDS Code Case

We design an (n, M, n(M —r),q) DNA-DSS based on an MDS code of length M and redundancy r as follows.
Let §' € ©"*(M=7) denote the information to be stored (in the notation of Definition 1, this corresponds
to |X| = g and k = n(M —r)). Each row vector of S’ is encoded using the encoder of the MDS code into
a row vector v of length M. Let S € ¥"*M denote the matrix whose rows are these encoded vectors, and
store each column of S in a distinct container. Once a container fails, the MDS property guarantees that to
recover its content, it is enough to know any M — r symbols from each row of S.

We therefore inquire for the expected time it takes to read this data from the functional containers. We
will formulate this question, and obtain its answer, in terms of the following random process.

Theorem 1. Let A® = 0»*(m+r) AW AR be q sequence of matrices constructed as follows: for each
t € N, we draw (v1,...,Vm4p) ~ Unif([n]™*?) and set

AW — A1) [evl’ B ~,6vm+p] 7

where e, denotes the column vector with a 1 in the a-th position and 0 in all other entries. Define Tj, m.,
as the random variable that corresponds to the smallest t such that every row of A® contains at least m

nonzero entries. Then,
n m +
E [Tl = (lnn +1In (m N ’f) PR 0(1)> :



The next corollary states the associated DNA-DSS, derived from Theorem 1 by instantiating it with a
standard MDS code having redundancy » = p+ 1 and length M = m + p+ 1. As concrete choices, one may
use a doubly extended Reed—Solomon code over an alphabet of prime-power size [Rot06, Section 5, Problem
5.2], or, in the special case where a single container acts as the redundancy container, a simple parity code
suffices.

Corollary 1. Let n,M,r € N. If r = 1, choose any positive integer ¢ > 2. If r > 2, choose q to be a
prime power satisfying ¢ > M — 1. Then there exists an (n, M,n(M —r),q) DNA-DSS such that the expected
recovery time, T;, of every container j € [M] is

M-1
E[Tj]:nlnn+nln< )—i—mio(n).
T T T T

A direct theorem for r = 1. We observe that Theorem 1 and Corollary 1 already handle the situation in
which exactly one container stores redundant data. Nonetheless, to build intuition for the proof of Theorem 1,
we present here and prove in Section 4a simpler statement, which can be viewed as a straightforward extension
of the classical coupon collector problem. In the special case r = 1, whenever a container fails, recovering it
necessitates reading all strands from each of the remaining containers. This is equivalent to asking for the
expected time until m independent coupon collectors (each with its own set of n coupons) collect all their
coupons. Formally, we show the following.

Theorem 2. Let n € N and let m be a constant positive integer with respect to n. Let Xl("), e ,Xf,?) be
i.i.d. random variables with XJ(TL) ~ CCP(n). Then,

E {max X;n)} =n(In(mn) +~v £ o0o(1)) .
j€lm]

In practice, each strand is stored in many identical copies, so sequencing typically yields multiple reads
of the same strand. When errors are present, having several corrupted versions of each strand can enhance
the tradeoff between rate and reliability. In this work, however, we do not address errors. Instead, we
generalize Theorem 2 to the setting where ¢ copies of each coupon are required, laying the groundwork for
future extensions that incorporate also storage errors.

Theorem 3. Let m and ¢ be constant positive integers. Let Xl(n’f), .. .,Xy(,?’z) be i.i.d. random wvariables
with X\ ~ CCP(n,{). Then,

E [max X](n,é)] =n(ln(nm)+ (¢ —1)Inlnn+ C, £ 0o(1))

J€[m]

where Cp = —In((¢ — 1)!).

2.2 The MDS Array Code Case

Our next result can be viewed as a generalization of Theorem 1, motivated by insights from the theory
of regenerating codes in classical distributed storage. Let S’ € £"*(M=7) yepresent the information to be
stored. In the DNA-DSS given in Corollary 1, we encoded each row of S’ independently to obtain the
encoded matrix S. Consequently, to reconstruct any column of S, it was necessary to read at least a fixed
number of symbols from every row of S.
We now proceed with a more general construction. Partition S’ into n/b consecutive submatrices
1oy Sy /b each of dimension b x (M — r). Concretely, the first submatrix is formed by the top b rows,
the second by the next b rows, and so forth. Each submatrix S; is then encoded into a new submatrix S; of
size b x M using an encoder &£ : R0*(M=7) _y 3i0XM of an MDS array code. The resulting matrix is obtained
by stacking Si,...,S, s, vertically. Note that here, the MDS property states that knowing the values of any
M — r columns of S suffice to recover S.
Assume now that the p-th container has failed and needs to be reconstructed, and focus, for the moment,
only on the first block S;. Let M, = [M]\ {p} denote the set of all remaining operational containers.



The encoding function &, together with the failed index p, defines a bad blocks configurations family B, C
P([b] x M,) (here, P denotes the power set) consisting of all index sets that cannot be used to reconstruct
the p-th column. Namely, B € B, if and only if the p-th column of S; cannot be reconstructed from the
collection of symbols {(S1); ; | (¢,j) € B}. Formally,

Definition 4. (Bad blocks configuration with respect to £ and p) Let £ : £0X(M=7) _ $3XM 4nd fiz an
index p € [M]. Define M, & [M]\ {p} and let B, C P([b] x M,) be a collection of subsets with the following
property: a set B belongs to By if and only if there exist two distinct encoded matrices S, S’ € S(ZbX(M_T))
such that S; j = Si ; for every (i,j) € B, while the p-th column of S is not equal to the p-th column of S'.
Equivalently, even after observing all entries S; ; with (i,5) € B, one still cannot uniquely determine the
p-th column of S. Moreover, define

at & (M —1)b— max |B|, and

p BeEB,

* A / /o

, = {B EBpHBI—gE%ﬁIB\}I-

Namely, o, is the smallest number of missing entries of S for which the p-th column cannot be recovered and
B, is the be number of bad recovering sets of mazimal size in By.

Note that since the same encoder £ is applied to every block, the family B, is the same for all matrices
S1,.+,9p- Thus, the question we consider is the expected time until, for each block, we have gathered
a set of indices that does not belong to B,. Similarly to Theorem 1, the next theorem defines the random
process and the stopping criterion that characterize recovery, given a bad blocks configuration.

Theorem 4. Let A© = 0"*™ AN AR be a sequence of matrices constructed as follows: for each
t € N, we draw (v1,. .., V) ~ Unif([n]™) and set

A® =AY Le, e, ] .
Let b € N that divides n and let B C P([b] x [m]). As Definition 4, define

E A * A ! /
£ mb — max |B = |{B e B||B|=max|B
a=m BS;S{' | p KB €B||B] Bg§| [}
Define T as the random variable that corresponds to the minimal t such that for all a € [n/b], we have that

{(Lj) € [b] x [m] | Az(i)(aq)b,j a 0} ¢5.

Then,

/B*

ba*
Theorem 4, combined with Definition 4, yields a framework for establishing an upper bound on the

expected recovery time of each container in a DNA-DSS.

E[T]gﬂ*lnn—i— ‘n+o(n),
a

Corollary 2. Let M,b,r,n € N where b divides n. An injective encoding function £ : L0*M=7) x yoxM
yields an (n, M,n(M — r),|%|) DNA-DSS code such that for every p € [M], we have

*

2 lnn+ Oy n+o(n),
a bas

E[T,] <

where B and ay, are defined in Definition 4.

Example 1. We specialize this framework to one of the simplest examples of an MDS regenerating code
[TWBI13, Fig. 1], defined over Fs. Let n be an even number. Consider the (n,4,2n,3) DNA-DSS defined by
the encoding function £ : F3*% — F2** defined by

gab_aba+ba+2d
c d))] \e d c+d c+0b )"’



where arithmetic operations are done over Fs. Assume that p = 1 and observe that there are exactly two sets of
size 3 that recover the first column: {(1,2),(1,3),(2,4)} and {(2,2),(2,3),(1,4)}. Further, there are only two
sets of size 4 that do not recover the first column: {(1,2),(1,3),(1,4),(2,2)} and {(1,2),(2,2),(2,3),(2,4)}.

Thus,
sloj1r| 2 | 3 | 4[5 6|
bs |16 () =15]() -2=18[2[0[0]

where bs = |[{B € By | |B| = ¢}|. Since M =4 and b =2, we get, of =3-2—4 =2 and 87 = 2. In total,
we get

E[Ty] < glnn—i— g +o(n) .

Note that, setting M = 4 and r = 2 in the scalar MDS DNA-DSS construction of Corollary 1, we obtain
E[T1] ~ 5 Inn + 0.838n % o(n), which shows that the regenerating code provides an improvement of at least
0.338n.

3 Preliminaries

We shall use the following limit theorem about the coupon collector distribution.

Theorem 5 (Theorem 5.13 [MUO05]). Let X ~ CCP(n). Then, for any constant c,

lim Pr(X >nlnn+cn]=1—¢"°

n—oo
This limit theorem is exactly a special case of the Gumbel distribution whose definition is given next.

Definition 5 (Gumbel distribution). The cumulative distribution function of Gumbel distribution with pa-

rameters p, 3 is
—(z—p)

F(z;p,B)=e° "

If X is a random variable with Gumbel distribution with parameters p, 8, we denote X ~ Gumbel(p, 3).

Definition 6 (Convergence in distribution). A sequence X = XMW x@ . of real-valued random variables
with cumulative distribution functions Fy, Fy, ... is said to converge in distribution to a random variable X
with cumulative distribution function F if lim, . Fy,(x) = F(x), for every x € R at which F' is continuous.

We denote convergence in distribution by X B x.

Lemma 1. Let X1, ..., X, bem sequences of random variables such that for everyn € N, Xl(n)7 Xg(n), . ,X,(ff)

are i.i.d. and for all j € [m], we have X z Gumbel(u, 8). For every n € N, denote XI(I?a)X = max; XJ(-n) and
let Xmax 2 XS0, XS, ... It holds that

Xonax 2 Gumbel(S1In(m) + p, B).

Proof. By the definition of convergence in distribution (Definition 6) and the Gumbel distribution (Defini-
tion 5), for every ¢t and j € [m],

(t—p)
B

lim Pr {X;n) < t} =e ¢

n— oo

For every fixed n € N, since an)7 e ,X,(,?) are i.i.d., for every fixed ¢ and m, we have
Pr [Xf,?gx < t} — Pr [Vj € [m], X" < t} — Pr [Xf") < t] .

Therefore, for any fixed t, m,

xn < t] = lim Pr [Xl(n) < t]m = exp (—eJt;“)) = exp (—ef(t_(wg ln(m))) .

max
n—oo

lim Pr [
n— o0

By Definition 5 and Definition 6, we conclude that X z Gumbel(81In(m) + u, 8) as required. O



For the following definition we shall need the following notation of an indicator. Let E be any event.
Then, define

1 if FE occurs
1g = .
0 otherwise

Definition 7 (Uniformly integrable, Definition 4.1 [Cutl12]). A sequence X = X1 X . of random
variables with finite expectation is called uniformly integrable if for any n € N, it holds that E[|X )] .
I xm>k] = 0 as K — oo, uniformly in n.

For a sequence of uniformly integrable variables, we have the following.

Theorem 6 (Theorem 3.5, [Bill3]). Let X = XM X . be a uniformly integrable sequence such that
X B X to some random variable X. Then X has finite expectation and lim,,_,., E[X(™] = E[X].

Throughout the paper, we shall want to prove that a sequence of random variables is uniformly integrable.
The following lemma gives a sufficient condition for that.

Lemma 2. Let X = XU X be a sequence of random variables and assume there exist C,c > 0 such
that for every t > 0 and any n € N, it holds that Pr[\X(")| > t] < Ce . Then, X is uniformly integrable.

Proof. We will verify that the two conditions specified in Definition 7 hold.

1. For every n € N, we have that
E[|X™|] :/ Pr [|X(")\ > t} dt
0

gc/ e*“’tdt:g<oo.
0 C

Thus, X (™) has finite expectation.

2. For any n € N and positive K,
0 <E[IX™] 15 >k] :/ Pr [|X(")\ > t} dt
- K

< C/ e tdt = ge_CK .
K C

Since limg o0 %e_CK = 0 and is independent of n, limg oo ]E[|X(")\ . 1\X(“>\2K] = 0 uniformly in n.
We conclude that X is uniformly integrable. O

4 Warmup: Proof of Theorem 2

We start by introducing the notations of this section. Let m be a constant positive integer. For all j € [m],
let X; = {X j('n)}nZQ be a sequence of random variables where X j(.") ~ CCP(n). Furthermore, we assume that

for every fixed n € N, the variables an), e ,X,(,?) are i.i.d. For every n € N, let X,&IQX £ MAax; ;] XJ(»").
We will be interested in the following normalized versions of Xy,...,X,,. For every j € [m] and n € N,

()
define Yj(n) £ XJT —Inn and Vi) 2 MAX; ¢ [n] Yj(”). Finally, for every j € [m], we set ); £ {Yj(n)}nzg and

ymax é {Yrg;gc}nZQ

The proof of Theorem 2 consists of the following steps. First, in Claim 1, we show that Vy.x converges
in distribution to the Gumbel distribution with ¢ = Inm and § = 1. Then, in Claim 2, we bound the tails of
YT,ET;Z( which is needed to show in Corollary 3, that )V.x is uniformly integrable. Finally, to prove Theorem 2
we will apply Theorem 6.



Claim 1. It holds that
Vinax 2 Gumbel(In(m), 1).

Proof. Note that for all n € N, and every j € [m] we have that an(n) +nlnn ~ CCP(n). By Theorem 5,

11_>m Pr nY( )+nlnn>n1nn—|—cn =1—-e°",

which implies that
—c

lim Pr[Yj(n) <d=e"

and thus, by Definition 6, the sequence Y; = Yj(l), Yj(Q), ... converges in distribution to Gumbel(0,1). Ap-
plying Lemma 1 with }1,..., Y proves the claim. O

Claim 2. For anyn > 2 and any > 0,

HYH(I’;X > x} <(24m)-e "
<m

Proof. We first show that Pr[YrSfZg( > x] ~7. Indeed, By the definition of Y,f,al, we have

Pr {Y(”) > x} Pr [X( ") > n(lnn + a:)]

max max
= Pr[some coupon was not collected at time n(lnn + )]

1 n(lnn+x)
<nm (1 — )
n

<me”*

where the first inequality is by a union bound.
Now, we show that Pr[Yrgzz( < —zx] < 2e~*. First observe that

m

max max

Pr [Y( n < x} < Pr [Y(") < x} =Pr [ 1(n) < —x}m =Pr [Xl(") <n(lnn — x)
Next, we shall bound Pr[Xl(") < n(lnn — z)]. Fix z, set t £ n(Inn — x), and define W® to be the number

of missing coupons after ¢ draws were drawn for the first collector. Note that W®) = E?Zl 1 ](-t) where [ J(-t)
is the indicator that j-th coupon was not collected in the first ¢ draws. Clearly,

Pr {Xl(n) <n(lnn— x)} =Pr [X{n) < t} =Pr {W(t) = 0} .

We shall bound the expectation and variance of W) in order to upper bound Pr[W(t) = 0]. We have that

n 1 n(lnn—2x) .
E {W(t)} = E E [[J@} =n- (1 — ) >n.e mor(nn=w) 5 op-aoy e
n
Jj=1

where the first inequality follows since (1 — 1/n)" > e~/ (=1 for all n > 2 and last inequality follows since
n~1/ (=1 is monotonically increasing. For the variance of W®) | we first observe that

Var(W(t)>:i€z[;L]Var( )+2 3 Cov(. (t)).

1<i<j<n

A\
M| —

Now, since Ii(t) is an indicator, then Var([§t)) < E[I,i(t)]. Moreover,

2 t 1 2t
con(11) = 1) e 1] 2 [1) = (- 5) (1) <o



where the inequality follows since (1 — 2/n) < (1 — 1/n)2. Combining, we have that Var(W®) < E[W®)].
Thus, by plugging these bounds into the Chebyshev inequality,
()
Var (W 2) < 1 < 93,
E[W®] E [W®]

Pr [W(t) - 0} <Pr Hw(ﬂ —E [W@} ’ >E [W(t)H <

We conclude that

Pr [YW < —x] _ (Pr [W(t) _ ODm <Pr [W(t) _ o} <27

max

O
Corollary 3. The sequence Ymax s uniformly integrable.
Proof. Follows directly from Lemma 2 and Claim 2. O
We are now ready to prove Theorem 2 which is restated for convenience.
Theorem 2. Let n € N and let m be a constant positive integer with respect to n. Let an), e ,ng) be

i.i.d. random variables with X](-n) ~ CCP(n). Then,

E {max X(.")} = n(In(mn) +v £ o(1)) .

jE[m] J

Proof. According to Corollary 3, the sequence Viax is uniformly integrable, and converges in distribution to
Gumbel(ln(m), 1) and so by Theorem 6, we have that

lim E [YISIZZ(] = E [Gumbel(In(m), 1)] = In(m) + v,
n—o0

Therefore, we can write
E [Y(")} =In(m) +~v £ o(1).

max

Remembering that XI(TZQX =nlnn+ nY,ﬁ,ZZ(, we conclude that

E[X{0] = ninn + nE[Y,{0] = n (In(mn) + 7 + o(1)) .

max

5 Proof of Theorem 3

The proof of Theorem 3 follows the same general strategy as that of Theorem 2. Specifically, we combine
convergence in distribution with uniform integrability to establish the convergence of expectations of a
sequence of normalized random variables and then infer the expectation of the target random variable.
However, the analysis in this case is more involved.

We shall first establish notations. Fix £ € N. For every j € [m], let X; = {X;n’z)}nzg be a sequence of

random variables where X j(-n’f) ~ CCP(n,£). As before, we assume that for any fixed n € N, we have that

Xf"’é),Xén’e), XY are 1., and we also denote X{hY 2 MAX ;e ] X;"’e). For every j € [m], define

yo o X0 5 gy o) . _ iy
; £~ — —Inn— ({—1)Inlnn and, as before, V; = {Yj tn>2. Finally, define Yiax = {Ymak’ fn>2
(n,t

J n
where Ymax) = MaX;¢[m] Yj(n’g). Recall that we assume that m and ¢ are constants with respect to n.
The next theorem, due to Erdés and Rényi [ER61], extends the limit theorem for the classical coupon
collector problem (given in Theorem 5), to the version of the coupon collector problem where one seeks ¢
copies of each coupon.

10



Theorem 7 ( [ER61] ). Let X9 ~ CCP(n,{), then

<lnn+ (£— l)lnlnn—i—x] = exp <_e> .

(n,0)
lim Pr X
(£—=1)

n—00 n

Equivalently, for Y ("0 & %Z) —Inn— (¢ —1)Inlnn, we have that Y (™9 3 Gumbel(—In((£ — 1)!),1).
Theorem 7, alongside Lemma 1, lead to the following corollary.

Corollary 4. It holds that

D m
ymax — Gumbel (1n (M) ,1) .

Proof. Note that for all n € N, and every j € [m] we have that an(n’e) +nlnn+n(f —1)Inlnn ~ CCP(n,¥).

By Theorem 7 and Definition 6, for any j € [m], Y, 3 Gumbel(—In((¢ — 1)!),1). Applying Lemma 1 with
Vi,...,Ym proves the claim. 0

As in the previous section, in order to prove that Ym.x is uniformly integrable, we will show that
Pr {|YI§£X[ )| > :c] can be exponentially bounded and that the bound does not depend on n.

Claim 3. There exists Co = Cy(€,m), such that for any x > 0,
Pr [Yrgggf) > :r} < Cpe™ 2.
Proof. Denote t £ n(lnn + (¢ —1)Inlnn + z). We have that

max

Pr [Y(”") > x} =Pr [ngﬁ) > t]
= Pr [some coupon was collected less than ¢ times at time ¢]

< nm - Pr[a specific coupon was collected less than ¢ times at time ¢]

oo ) e
o ()

t—r

where the first inequality is obtained via a union bound, the second inequality applies the bound (Z) <ab,
and the third inequality uses the bound (1 — 1/n)" < e~! together with the fact that the final term in the
sum is the largest one. For any ¢, there exists x(¢) > ¢ such that for any x > x¢(¢), 2! < e2. Hence, for
any x > (),

. " -1 ¢ -1

nlnn

11



where the first inequality holds since —L— = 1 4 (=Ulnn | s < £+ 2x, and the second inequality holds

nlnn Inn

by the requirements on z(¢). Put it all together,

—1
t t x
Pr [Y(”’e) > x] < 2'ml-ne n (> < 263 mpe% .

max
n

In addition, for any 0 < z < x¢(¥), Pr[legZ;f) > 1] <1< e*®e~3, Denote Cy(f, m) £ max {eﬂfo(@)?g?f—lmz}_
-4

Then, Pr[Yn(f;;f) > x] < Co(f,m)e” 2 for any = > 0 as required. O

To bound the left tail, namely, to bound Pr [Yn(lg,f ) < fx] , we will need the notion of negatively associated

random variables.

Definition 8 (Negative association). A collection X1, Xa, ..., X, of random variables is called negatively
associated (NA) if for every two disjoint index sets, I,J C [n], and every f : Rl = R and g : Rl — R
that are both non-decreasing or both non-increasing, we have

Elf(Xyiel)g(X;,je )] <E[f(Xsie)]E[g(X;,j€ ).
Equivalently, Cov(f(X;,i € I),9(X;,j € J)) <O0.

Theorem 8 (Theorem 13, [DRI6]). Suppose we throw m balls into n bins independently at random. For
i € [n], let B; be the random variable denoting the number of balls in the ith bin. Then, the variables

By,...,B, are NA.

Claim 4. There exists C1 = C1({), such that for any x > 0,

[V

Pr [erl’;;f) < —x} < Cie 2.
Proof. Similarly to the proof of Claim 2,

max

Pr [Y("’Z) < —x} =Pr [Yl("’e) < —x}m < Pr {Yl("’e) < —x] =Pr [an’é) <n(lnn+ (¢ —1)lnlnn —z)|.

Fix x, and define t £ n(lnn + ({ — 1)Inlnn — ). If x > Inn+ (¢ — 1)Inlnn — £, then ¢t < nf. Hence

Pr[an’e) < t] =0, and in particular Pr[Yrgg;f) < —z] =0 < Ce“ for any C,c > 0. Therefore, for the rest
of the proof, we assume that 0 <z <Inn+ ({ —1)Inlnn — £.

Let BJ(»t) be the number of copies of coupon j after the first ¢ draws of one collector, and define I J(t) =

A

Tow Then Ij(-t) is the indicator that coupon j has less than ¢ copies after the first ¢ draws, and W®)
J

Z;‘L:1 I j(-t) is the number of such coupons. Hence,
Pr an,e) <n(lnn+ (¢ —1)lnlnn — x)] =Pr [an,e) < t] =Pr [W(t) = 0} .

Analogously to the proof of Claim 2, we now derive bounds on the expectation and variance of W® in order

to obtain an upper bound on Pr[W(t) = 0]. Note that the variables B%t), ceey BT(f) correspond exactly to the
balls and bins paradigm (with ¢ balls and n bins), and thus, they are NA according to Theorem 8. Moreover,

observe that the indicator function f(B) = 1 p<, is non-increasing, thus for any i # j, Cov(Il-(t), Ij(t)) < 0.
Therefore,

Var (W“)) =3 Var (IJ@) +2 Y Cov (I§”,I§“)
J€[n]

1<j<i<n
5 (i) < 5 a[s] 5[]
J€[n] j€[n]

12



where the last inequality holds again since for any indicator I, Var(I) < E[I]. Moreover,
® -1 ¢ 1\" 1 t—r
®| = (08 - =
E (W ]ZE{IJ}nZQ)(n) (1 n) > 0.
j€ln] r=0

Hence, by the Chebyshev inequality,

()
Pr [W“) = o} < Pr HW“) _E [W(t)” >E [W(t)H < Yar (W 2) <t
E [W(t)] E [W(t)]

In addition,

Divide into cases:

1. 20 —1)lnlnn < a:

— [t 1\’ 1
ne_ﬁ Z > ne_ﬁ = n_ﬁeﬁ(r_(e_l) lnlnn) > 76ﬁ% >
- =9 sl

z
2
€ )

N | =

r n—1
r=0

where the second inequality holds by the requirements on z and the monotonicity of n=1/(»=1),
2. 0<2<2(f—1)Inlnn: Let ny = nyi(¢) be such that for any n > ny :
(a) Inn>2({—1)Inlnn
(b) (Inp) "1 > 1

In this case, we have

> () ()= () GH)

- (f—ll)e—1 (ni1)Zl
1 (n(lnn+(€1)1nlnnx)>£1

T =1t n—1
> W (Inn—(£-1) lnlnn)zf1
1

-1
Z oy )

13



where the first inequality just considers the last summand, the second inequality applies the bound
(Z) >a"/ b®, and the last inequality is due to our assumption 2a on n. Thus,

-1

ot t 1 " -2 1 -l
ne Z() <n—1> e T et v
r=0

o _n% _n%((é—l)lnlnn—z); =1

=n Te B (f— 1)[—122—1 (lnn)
1 @ -5

> g ()™
1

X

where the last inequality holds due to assumption 2b on n.
Therefore, for the cases where either n > n; or n <n; and 2({ — 1) Inlnn < z,
= 1 \"
s[re] == 3 (1) (759)
> min {161, 1_6I}
27 (0 —1)t-12+1

1
= = 11201 >

[N

and therefore,

Pr [Y("’Z) < —x} <Pr [W(t) = O}

max —
1

= EWo]

S (E _ l)l_12é+16_%.

Lastly, for the case where x < 2(/—1)Inlnn and 2 < n < nq, it holds that z < 2(/—1)Inlnn < 2(/—1)Inlnny,
and

Pr [Yn(lgf) < _x} < 1= (Inng) @D D Inn < (1D —5
We conclude the proof of the lemma by noting that for C(¢) £ max{(¢ — 1)*~121 (Inn;)“~Y} and any
x > 0,n > 2, it holds that Pr [Yrﬁﬁ;f) < —x} < C; (E)e*% as required. O
Corollary 5. The sequence {Yéﬁ;p}nm 18 uniformly integrable.
Proof. By Claim 3 and Claim 4, we ha\:e that,

|

V0| > 2] <Pr[vimd > ] + Pr[vind < —a] < (Go+Cr)eE

The claim follows according to Lemma 2. O
Now we will prove Theorem 3 which is restated for convenience.

Theorem 3. Let m and ¢ be constant positive integers. Let Xl("’e), .. .,X,(,?’e) be i.i.d. random variables

with X" ~ CCP(n,t). Then,

E [max X;”’e)] =n(n(nm)+ (£ —1)Inlnn+ C; £ o(1))

J€[m]

where Cp = v — In((¢ — 1)!).

14



Proof. By Corollary 4 and Corollary 5, Vyax = {Yé{;,f )} is uniformly integrable and converges in distri-
n>2

bution to Gumbel (hl (ﬁ) , 1). Therefore, by Theorem 6,

Jim E {Y,ﬁ;ﬂ —E [Gumbel <ln <<£i”1)‘> 1>} —ln <(€ Tm) +1.

We note that Xr(rﬁ;,{) =nlnn+n(l—1)Inlnn + nYn(qZ;f). Hence,

max max

E[X(9] =nlnn+n(f —1)Inlnn + nE [Y("’Z)}
=n(ln(nm)+ (¢ —1)Inlnn+ C, £ o(1))

where Cy = v — In((¢ — 1)!). O

6 Proof of Theorem 1

The proof of Theorem 1 is based on the same general framework as the proofs of Theorem 2 and Theorem 3,
namely, analyzing normalized versions of the relevant random variables and establishing their convergence in
distribution and uniform integrability. Having said that, unlike the previous theorems, there is no well known
normalization related to the problem. Consequently we had to find it and prove its limiting distribution.
Throughout this section, we adopt the following notation. Let A©) = 0®*(m+r) AW AR e a
sequence of matrices constructed as follows: for each ¢t € N, we draw (v1, ..., Um+p) ~ Unif([n]™"?) and set

AD = 46D 4 (e, e, ]

where e, denotes the column vector with a 1 in the a-th position and 0 in all other entries. Define 75, 1, ,
as the random variable that corresponds to the smallest ¢ such that every row of A® contains at least m
nonzero entries. For each row i € [n] and time ¢ > 0, let X;(¢) denote the number of nonzero entries in
row i of A®, and by E;(t) the event that row ¢ has less than m nonzero entries at time ¢, i.e., F;(t) =
{(X1(1),.... X)) € (Im+ plU{0H)™ | X;(t) < m}. In addition, denote Z, , , = %1 Trm,p — Inn.

The proof of Theorem 1 follows a three-step argument. We begin by showing in Theorem 9 that
{Z m,p}n>2 converges in distribution to a Gumbel law with parameters p = In (:fo) and § = 1. We
then establish in Claim 5 and in Claim 6 suitable tail bounds of {Z, ,, ,}n>2, which yield uniform integra-
bility in Corollary 6. Combining these ingredients, we conclude the proof of Theorem 1 via Theorem 6.

We begin with some estimations which will be used in the proof of Theorem 9.

Lemma 3. Let m,p,k € N,z € R be fized constants with respect to n € N, and set

¢ug::<”l+p)e—%

m—1

Ift = #(lnn + ), then!

Consequently, if

Uk(n) 2 Z Pr( rk] E;, (t)),

then ) ;
U(m) = Y (12 o01)) 2)

ISince E;(t) = {(X1(t),...,Xn(t)) € (Im + p] U {0P™ | Xi(t) < m}, the event E1(t) N --- N Ei(t) is the set
{X2(t),- - Xn(®)) € (fm+ p] U {ON™ | Vi € [k] = Xi(t) < ).
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Proof. Fix k > 1 and consider the event Ey(t) N--- N E(t) which is the event where at time ¢, every row

i € [k], contains less than m nonzero entries. In order to calculate Pr (El(t) N---N Ek(t)), we will estimate

the probabilities of different possible patterns of A®). For each j € [m + p|, denote by &; C [k] the set of
rows with zero entries at column j, and call £ = (&1,...,&mn+,) the configuration at time ¢. A configuration
& for which the event F1(t) N---N Ey(t) occurs, it called a valid configuration.

For t = -2 (Inn + z), and each fixed £ C [k], j € [m + p],

Pr[At time , £; = &] = Pr[Vl€§ A“)_o}Pr[\ﬁe[]\g AD > 1 vieg: AY }

(1 Ely k;lzl( 1)“(’“;'5') (1‘n—a|§|)t

(2955

|
>
a=0
k—I¢] - (Inn+x)
_ o k=18 Sl +a o™
> () (- 5)

=(n"te ™)V (1 £ o(1)) .

\§|+a> e (Innta)

n

= (n~te=®)E+a)/(p+1)(1 £ (1)), the dominant

term in the sum is obtained when a = 0, namely, (n='e=®)I&l/(P+1)(1 4 (1)), while all other terms (in
absolute value) are o((n~te=®)I&l/(P+1)),
As the columns are independent, the probability that at time ¢, the obtained configuration is £ =

(51, e ,§m+p) 1S

m+p m-+p .
H (n7167$)|£j‘/(p+1)(1:|:O(]_)) _ (nileix)(ZJZI |§J‘)/(P+1)(1i0(1)) ) (3)
j=1

Here, the last equality holds since (1 -

Now, note that for the event E1(¢)N---NEy(t) to occur, for any i € [k], we must have 7~ me U Liee;, > pt1.

Therefore, it holds that 3%, Zmﬂ) Tice, > SF (p+1) = k(p+1). However, by changlng the order of
summation, we get

k m+p m+p k m+p
Hp+)=d D Tiey =) ) Lie = 2 [6)]
i=1 j=1 Jj=1 =1 Jj=1

If Zerp |€;1 = k(p+ 1), then (3) becomes n~*e~*%(1 £ 0(1)). Also observe that £ is valid and Zmﬂ’ 1] =
k(p+1) if and only if for all i € [k], it holds that 37" I;c¢, = p+1. Thus, there are exacly (m“) = (zf’f)
valid configurations & for which Zm+p €] = k(p+ 1), and we have get that at time ¢,

(o m+p\ "* V()
PI‘ £ iS Valid and Z |§7‘ = k(p+ 1) = (m B l1)> Tlikeikiﬂ(l ZIZ 0(1)) _ nk (1 :I: 0(1)) .
j=1

where ¢(z) = (ZJrf)e_”

If Em+p €] > k(p + 1), then (3) is o(n™%). As k,m, and p are constants and the number of total
configurations is 25(™*°) we get that

m+p
Pr | £ is valid and Z & > k(p+1)| <28+ o(nF) = o(n7F) .
j=1
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Thus, since we cannot have a valid configuration & with Zmﬂ) 1£;] < k(p+ 1), we conclude that

()"
nk

Pr(Ei(t)N---NER(t)] = (1+o0(1)),

as claimed in Lemma 3. Lastly, since Pr [ﬂ;?:l E;, (t)} =Pr [ﬂ?zl E; (t)} is the same for any set {iy,...,ix} C

xT k xT k
], i Uk(n) 2 0 cocsan Pr(ﬂ?zlEij(tD, then Uy(n) = (7)22X(1 £ o(1)) = “@5(1 4+ o(1)) as
stated. O

The proof of Theorem 9 uses the asymptotic evaluation we analyzed in Lemma 3 and Bonferroni’s
inequalities to prove the convergence in distribution of {Z, m p}n>2-

Theorem 9. For each fized x € R,

nhﬁngoPr{ nm.p < pj_l(lnn—i-x)] = exp(—(?@tf)e‘”).

Equivalently, for Z,m,p 2 ptl Thm,p — Inn, we have

Ty 2 Gumbel(ln<m+p>, 1) .
’ m—1

{Tom,p <t} = (L_nJ Ez‘(t))ca

since Ty, m,, < t means that all rows of A® have at least m nonzero entries. Therefore,

Proof. Recall that

n

UE®

Pr(Thm,<t]=1-Pr

i=1
By Bonferroni’s inequalities, for every § > L > 1,
2L n 2L—
Z(_l)k+1Uk(n> S Pr U Z k-‘rlUk )
k=1 i=1 k=1

where recall that Ug(n) is 30, <; ... i <, PT [ﬂ _
all n > ng(L), we have

(t)] . For any fixed L, there exists ng(L) such that for

4§ 1
Uk(n) — 1/1(;') < BY7) foralll <k <2L.
Hence,
2L k n 2L—-1 k
k+1 1/}(3:) 1 ) k41 w(l“) 1
> (-1 T—EgPrUEl(t) < > (-1 0t
k=1 i=1 k=1
As L — oo, both bounds converge to the alternating series
oo
Z k+1¢ =1 — e V@,
=1
Therefore,
; _ — o ¥(@)
nh—>Holo Pr[T, m, <tl=1 nlgrolo Pr L_JIE i(t) e
which completes the proof. O
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We now head to the proof that the set {Zn’m’p}nzg is uniformly integrable.
Claim 5. For any x > 0 and any n € N:
Pr[Zpm,p > ) <27 HPe"

Proof. Fix z € R and set u = Inn + x, so that Pr[Z, m , > z] = Pr[T, m,, > S47ul. Recall that we define
the random variable X;(¢) to represent the number of columns that were collected in the i-th row by time ¢.

We have that X;(t) ~ Bin(m+ p,p;) where p, =1— (1 — %)t is the probability that a specific column draws
a specific row by time t.

m—1

m—1
Pr[x<t><mz( N Ry (R p+1z< ") <2 et
=0 =0

With ¢ = 77 u this gives

t
1—p = 1—l < emtm = gmu/ (el
) =
Therefore,
Pr[E;(t)] = Pr[X;(t) < m] < 2mFP(1 — py)P Tt < 2mtPe—v = gmtrp—le—e,

Applying the union bound over all n rows yields

n
Pr|Z,m,,> x| =Pr |Thm, > u| < 2mMtPeTe
[ s, P } |: P p +1 :| —

For the proof of the left tail, we recall some properties of NA random variables,

Proposition 1 (Property Pg, [JDP83]). Non-decreasing functions defined on disjoint subsets of a set of NA
random variables are NA.

Proposition 2 (Property Pz, [JDP83]). The union of independent sets of NA random variables is NA.
Claim 6. For any x >0 and 2 <n € N:

1
PriZym,<—ax] < ———e7°
[ s, P ] CQ(m,P)

where Co(m, p) = 1(MFP) (1 — e mér)m—1,

m—1

1)m n nm : :
Proof. Fix z,n, and set t = 25 (Inn —z). If z > Inn — (‘:;_)p then t = 25 (lnn —x) < mip which is

the minimal number of roun(f in order to have at least m nonzero entries 1n each row, and in particular

Pr(Zymp < —x] = Pr[T m, < t] =0 < Ce™ for any C > 0. Assume that 0 <z <lIlnn — (p:}r)p and let

W® be the number of rows with less than m nonzero entries in A®: W® = " 1) where I is the
indicator that row 7 of A®) has less than m nonzero entries. We have that

Pr[Zpmp < —] = Pr[Tpm, < 1] = PrW® =0).

For every i1 # i, Cov(j'i(lt)7 Ii(j)) < 0: Similarly to the proof of Claim 4, for any fixed j, by Theorem 8
the set of entries {Agt]) }iemn) is NA. For any j; # j2 the sets are independent, hence, by Proposition 2 the

entire set {Agf])'}ie[n],je[m+p] is NA. For any i € [n],j € [m+ p] let I( ) be the indicator that A( ) is nonzero.
Since these are non-decreasing functions defined on disjoint subsets of a set of NA random Varlables the

set {L; j}Yicin),jelm+p) 15 NA. Note that X;(t) = Zm+p Il(tj), therefore by Proposition 1 {X;(t)},, are NA.
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Finally, since the indicator function f(X) = 1x<, is non-increasing, and IZ-(t) = 1x,(t)<m, by the definition
of NA (Definition 8), we have Cov(Ii(f) Igt)) < 0 and thus 0 < Var(W®) < E[W®)]. Moreover,

s Lig

EW®]=3"E [IJ@} =n-Pr[X;(t) < m]

m—1
m + map—
w3 (M et
k

=0
mA P\ e b (e
( )pt L(1 = py)mtr=(m=1

Y
3

m—1
m+p\ m- +1
N n(m— 1>pt AR

In addition,

(p+1)t
(-t = (1-1)" m e e s e
n 2n

and since we assume that 0 <z <Inn — (F:;ii)pm,

1\' , m
pt:1—<l—> >loen=1—e mMn2) > 1 _ 5% >0
n

Thus,

1 m .
EW®)] > n<m N p)pl’“(l —pe)’t > S (m i p)(l —e i) let

m—1 —2\m-—1

Therefore, for Co(m, p) = 4 (M+P)(1 — e~ m+5 )™ ! we obtain that

Pr[Zym, < —a] = Pr[W® = 0]
<Pr W - EW]| > EW )|

Var(W®)
- E[w®]2
<« L1
- ]E[W(t)]

1

CQ(m’ p)

IN

e ",

as claimed. O
Corollary 6. The sequence {Zy m.p},~o i uniformly integrable.

Proof. By Claim 5 and Claim 6, for every x € R,n > 2 we have that,

1
Pr||Z,m ol >x| <Pr|Z,m,>x|+Pr|Z,., §—x§(2m+p+>ew.
1Znsmpl > 7] < PrZp > 7] + P (Znmp < —] o

The corollary follows according to Lemma 2. O

We can now complete the proof of Theorem 1, restated below for clarity.
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Theorem 1. Let A©) = 0"*(m+0) A AR) be a sequence of matrices constructed as follows: for each
t € N, we draw (v1,...,Vm4p) ~ Unif([n]™") and set

AW = AUD 4 e, ..

L] evarp] )

where e, denotes the column vector with a 1 in the a-th position and 0 in all other entries. Define T}, .,
as the random variable that corresponds to the smallest t such that every row of A®) contains at least m

nonzero entries. Then,
n m+p
E[Tym,p) = ﬁ (lnn +1In (m B 1> +~+ 0(1)> .

Proof. According to Corollary 6, and Theorem 9, the sequence {Z m ,} is uniformly integrable and

n>2
converges in distribution to Gumbel(In (zf’l’), 1). Therefore, by Theorem 6, we have that
. m—+p
lim E|Z, ] =1 .
L E (Zom,] n(ml) +

Recall that Ty, m,, = 15 (Zn,m,p +1nn), hence,
E[Thm,p) = " nn+ In (m—l—p> + -2 v+ o(n).
p+1 p+1 \m-1)" p+1

O

7 Proof of Theorem 4

We start by recalling the statement of the theorem.

Theorem 4. Let A© = 0"*™ AN AR be a sequence of matrices constructed as follows: for each

t € N, we draw (v1,...,Vm) ~ Unif([n]™) and set

AW =AY e, e, ] .
Let b € N that divides n and let B C P([b] x [m]). As Definition 4, define
o =mb—max|B| 7= [{B'€B||B'| = max|B|}|

Define T' as the random variable that corresponds to the minimal t such that for all a € [n/b], we have that

{.9) el xm] | ALY, ), #0} ¢ B.

Then,
n *
ET] < —1 .
[T] < o nn+ o n+o(n),
We will first prove the following upper bound
Claim 7. For every positive x, we have
n 6* —x 2, —-1
Pr [TZ §~(lnn+x)} < 5 € (1+(mb) n a*) .

Proof. Define t 2 2 (Inn +x). We begin by focusing only on the first block, i.e., the case a = 1. Our goal is

o
to upper bound the probability that, at time ¢, the collection of all nonzero entries is still a bad set, that is,
lies in B. This will ensure that the block is not yet in a recovering state. More precisely, we will prove that

Pr[{(.5) € B < [m) | AY) #0} € B < 8" n~te™ (14 (mb)*n=a") .
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Then, the claim will follow from taking a union bound over all the n/b blocks.
It holds that

Pr [{(z’,j) € o] x [m] | AL # o} € B} -y P H(i,j) € o] x [m] | AL # o} - B] .
BeB

Fix B € B and denote by B its complement in the block, i.e., BUB = [b] x [m] and BN B = (). We have
Pr[{ (i) € bl x [m] | AY) #0} = B] = Pr [{(i.5) € 1) x [m] | AY) =0} = B] ,

and if we denote s; = |{i € [b] | (i,4) € B}|, then,

Pr[{(i.j) € ] x (m] | AY) =0} = B] :]njl( _%)t < ﬁ (1_71l>sﬂ _ (1_ i)(wz}—m»t |

Now, observe that this upper bound depends only on the size of B. Thus,

Pr [{(i,j) € [b] x [m] | AE? # 0} € B} < Z (1 B 1>(mb|B|)~t S Z o

n
BeB BeB

Note that mb — |B| > a*. For all s € [0,mb], denote by 8, = |[{B € B | |B| = s}|, i.e., the number of the
sets in B of size exactly s. Furthermore, set s* = mb — a*. Then,

(mb—|B|)(In nta) \B\)(ln'n+'r) (mb—s)(In nta) s)(ln"n+7‘)
> e *Zme

BeB
é ﬁs* : n—le—w + Z ﬂs e a:jl '(hl n+x)
s=s*+1

< Bor o (1 (mb)Pnm )

The claim follows by a union bound over all a € [n/b]. O
With this bound, we can prove Theorem 4.
Proof of Theorem /. Define tg = (nlnn)/a*. It holds that
to—1
T)=> Prll >t = ZPrT>t +ZPrT>t
t>1 t=to

The first sum can be bounded trivially by ¢y (every term in the sum is at most 1). We focus on the second
sum.

Ypr>i=Y Pr [Tz ";n” +k]

t=to k=0
= n a*
< - il
<> Pr [Tz — <1nn+k - )]
k=0
N e D M
- b
k=0
65* ( 2 _ 1 1
S (1 + mb n “*) I ———
, (mb) =
Now, by Taylor expansion, 1 —e~* = 2 — 2%/2 4+ O(2?), we conclude that
ET] < 2~ lnn+ fs n-(14+m?n~a7)(1+ o(1)),
a*
and the result follows by recalling that m and b are constant with respect to n. O
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