
Channels with Input-Correlated Synchronization Errors∗

Roni Con† João Ribeiro‡

Abstract

“Independent and identically distributed” errors do not accurately capture the noisy behavior
of real-world data storage and information transmission technologies. Motivated by this, we
study channels with input-correlated synchronization errors, meaning that the distribution of
synchronization errors (such as deletions and insertions) applied to the i-th input xi may depend
on the whole input string x.

We begin by identifying conditions on the input-correlated synchronization channel under
which the channel’s information capacity is achieved by a stationary ergodic input source and is
equal to its coding capacity. These conditions capture a wide class of channels, including chan-
nels with correlated errors observed in DNA-based data storage systems and their multi-trace
versions, and generalize prior work. To showcase the usefulness of the general capacity theorem
above, we combine it with techniques of Pernice-Li-Wootters (ISIT 2022) and Brakensiek-Li-
Spang (FOCS 2020) to obtain explicit capacity-achieving codes for multi-trace channels with
runlength-dependent deletions, motivated by error patterns observed in DNA-based data storage
systems.

∗A preliminary version of this work has been accepted for presentation at ISIT 2025.
†Department of Computer Science, Technion - Israel Institute of Technology, Haifa. roni.con93@gmail.com
‡Instituto de Telecomunicações and Departamento de Matemática, Instituto Superior Técnico, Universidade de

Lisboa. jribeiro@tecnico.ulisboa.pt

1

Contents

1 Introduction 3
1.1 Our contributions . 3
1.2 Related work . 5

2 Preliminaries 6
2.1 Notation . 6
2.2 Channels . 7
2.3 Entropy and information rates for stochastic processes and notions of capacity 7
2.4 A strengthening of Fekete’s lemma . 8
2.5 Concentration inequalities . 9

3 Capacity theorems for channels with input-correlated synchronization errors 9
3.1 Admissible channels . 9
3.2 Existence of relevant limits for admissible channels 10
3.3 Information capacity of admissible channels is achieved by stationary ergodic process 12
3.4 Information capacity of admissible channels is achieved by Markov process 16
3.5 Coding capacity equals information capacity, and existence of dense codes from sta-

tionary ergodic processes . 17
3.5.1 Convergence of information density for block-independent process 17
3.5.2 Capacity-achieving codes for admissible channels 19
3.5.3 Dense capacity-achieving codes for admissible channels 20

4 Some special cases of our capacity theorems 21
4.1 The Mao-Diggavi-Kannan ISI model . 21
4.2 Multi-trace channels with input-correlated synchronization errors 23
4.3 Capacity theorems for trimming synchronization channels 25
4.4 Channels with runlength-dependent deletions . 25

5 Warmup: efficient capacity-achieving codes for channels with runlength-dependent
deletions 28
5.1 Construction . 29
5.2 Analysis . 31

6 Efficient capacity-achieving codes for multi-trace channels with runlength-dependent
deletions 33
6.1 Auxiliary results . 35
6.2 Construction . 36
6.3 Analysis . 39

7 Lower bounds on the capacity of a threshold deletion channel 43
7.1 First lower bound . 43
7.2 Second lower bound . 46
7.3 Achievable rates for τ = 2 and τ = 3 . 50

2

1 Introduction

Errors which cause loss of synchronization between sender and receiver, such as deletions, insertions,
and replications, occur in various communications and data storage technologies, with DNA-based
data storage being a notable recent example. Despite considerable effort, pinning down the capacity
and designing efficient nearly-optimal codes for channels with synchronization channels remain
major problems in information and coding theory. The surveys by Mitzenmacher [Mit09], Mercier,
Bhargava, and Tarokh [MBT10], and Cheraghchi and Ribeiro [CR21] provide in-depth discussions
of the many challenges encountered when dealing with synchronization errors.

Most prior work on channels with synchronization errors has focused on i.i.d. errors. However,
synchronization errors in real-world systems do not satisfy this assumption. For example, it has
been observed in empirical analyses of widely used DNA sequencing technologies [RRC+13, HMG19]
that short substrings of DNA strands (which are written using a 4-symbol alphabet A,C,G, T) with
either a very high (above 75%) or very low (below 25%) concentration of G’s and C’s experience
higher deletion rates [RRC+13, Figure 4], and that longer runs of the same symbol in DNA strands
experience higher deletion rates than shorter runs during sequencing [RRC+13, Figure 5]. More
broadly, a long series of works has explored, among many other things, the types of errors and error
rates that occur in such systems, using different synthesis and sequencing technologies [GBC+13,
RRC+13, GHP+15, TYYM+15, BLC+16, EZ17, YGM17, OAC+18, HMG19, PHJ+20, SGPY21].

Motivated by this, we study a general class of channels with synchronization errors where the
error distribution of the i-th input symbol xi may depend on the whole input x. We also consider
“multi-trace” versions of these channels, where the input x is sent through multiple independent
channels, generating multiple channel outputs (traces) at the receiver end, which is especially rele-
vant in DNA-based data storage.

1.1 Our contributions

Capacity theorems for channels with input-correlated synchronization errors Our first
contribution, in Section 3, is a capacity theorem for a general class of channels with input-correlated
synchronization errors, which we call admissible channels. The precise definition of an admissible
channel is given in Section 3.1. As we show afterwards in Section 4, this class includes as spe-
cial cases the channel model of Mao, Diggavi, and Kannan [MDK18], multi-trace channels with
input-correlated synchronization errors, and, more concretely, channels with runlength-dependent
deletions where bits in runs of length ℓ are deleted independently with probability d(ℓ), for an ar-
bitrary function d : N → [0, 1]. Channels with runlength-dependent deletions will be our concrete
running example throughout this paper to showcase the usefulness of this result.

Theorem 1 (Informal, see Theorem 4 for a formal statement). Let Z be an admissible channel (see
Section 3.1). Then, its information capacity equals its coding capacity, and the information capacity
is achieved by stationary ergodic sources.

Efficient capacity-achieving codes for single- and multi-trace runlength-dependent dele-
tion channels. As observed by Pernice, Li, and Wootters [PLW22], a standard but quite useful
consequence of Theorem 1 is that admissible channels have capacity-achieving codes with additional
structure. In particular, admissible channels Z with binary input alphabet have capacity-achieving
codes C such that every short substring of every codeword c ∈ C has not-too-small Hamming weight
(see Theorem 5 for a formal statement).

To showcase the usefulness of this consequence of Theorem 1, we use it to obtain efficient
capacity-achieving codes for channels with “bounded” runlength-dependent deletions, in both the

3

single-trace and multi-trace settings. More precisely, a bounded runlength-dependent deletion chan-
nel is a runlength-dependent deletion channel with a non-decreasing deletion probability function
d : N → [0, 1], and such that there exists an integer M such that d(ℓ) = d(M) < 1 for all ℓ ≥ M
(see Definition 11 for a formal definition). Its T -trace version is the channel that on input x outputs
Y1, . . . , YT (called traces), where the Yi’s are independent and identically distributed like outputs
of the bounded runlength-dependent deletion channel on input x.

In the single-trace setting (Section 5) we combine the structured codes resulting from Theorem 1
with an approach originally applied to channels with i.i.d. synchronization errors in [PLW22] to
obtain efficient capacity-achieving codes for any bounded runlength-dependent deletion channel.

Theorem 2 (Efficient capacity-achieving single-trace codes, informal. See Theorem 11 for a formal
statement). Let Ch be a bounded runlength-dependent deletion channel. Denote its capacity by Cap
and let ε > 0 be an arbitrary constant. Then, there exists a family of binary codes {Cn}∞n=1, where
Cn has blocklength n and rate Rn > Cap− ε for all large enough n, that is robust for this channel.
Moreover, the Cn’s are encodable in linear time and decodable in quasi linear time in the message
length.

As we discuss in more detail in Section 5, this result can be generalized well beyond channels with
bounded runlength-dependent deletions. Broadly speaking, the theorem can be extended to any
runlength-dependent deletion channel that satisfies two key conditions. First, with high probability,
a very long run of zeros will remain long after passing through the channel. These long zero runs
help maintain some degree of synchronization between the sender and the receiver. Second, in any
interval that is not too short and contains a high density of 1s, the probability that all of the 1s
are deleted is very small. In this paper, we focus on the bounded runlength-dependent deletions
(where the deletion function is non-decreasing) to keep the analysis simpler and because it is more
realistic in practice for longer runs to experience higher deletion rates.

In the multi-trace setting (Section 6) we again rely on Theorem 1, which in particular implies
the existence of structured codes attaining the capacity of the multi-trace bounded runlength-
dependent channel. Then, to achieve efficient codes with matching rate, we combine it with the
main idea of Brakensiek, Li, and Spang [BLS20], with some minor modifications, who showed how
to compile average-case trace reconstruction algorithms into efficient rate 1 − o(1) codes for the
coded trace reconstruction problem. This yields efficient capacity-achieving codes for any t-trace
bounded runlength-dependent deletion channel.

Theorem 3 (Efficient capacity-achieving multi-trace codes, informal. See Theorem 13 for a formal
statement). Let Ch be a T -trace bounded runlength-dependent deletion channel, for an arbitrary
constant integer T ≥ 1. Denote its capacity by Cap and let ε > 0 be an arbitrary constant. Then,
there exists a family of binary codes {Cn}∞n=1, where Cn has blocklength n and rate Rn > Cap − ε
for all large enough n, that is robust for this channel. Moreover, the Cn’s are encodable in linear
time and decodable in quadratic time in the message length.

The difference between Theorem 2 and Theorem 3 is that the former guarantees better decoding
complexity in the single-trace (T = 1) setting. We see Theorem 2 as a natural warmup towards the
multi-trace result in Theorem 3, as its proof is significantly simpler.

Capacity lower bounds for runlength-dependent deletion channels. Our results presented
above effectively allow us to turn any capacity lower bound for bounded runlength-dependent dele-
tion channels into efficiently encodable and decodable codes with that rate. To complement this,
in Section 7 we study concrete (single-trace) capacity lower bounds on arguably the simplest class

4

of bounded runlength-dependent deletion channels: For a threshold τ ≥ 1 and d ∈ [0, 1], consider
the runlength-dependent deletion channel that independently deletes each bit in a run of length at
least τ with probability d, and does not apply any deletions to bits in runs of length less than τ .
The case τ = 1 recovers the standard i.i.d. deletion channel.

A naive approach towards lower bounding the capacity of these channels is to take the largest
runlength-limited code, whose codewords only have runs of length less than τ . The maximal rate of
such codes as a function of τ is well known. We obtain capacity lower bounds that improve on this
baseline approach for a large range of d, as illustrated in Figures 1 and 2 for thresholds τ = 2 and
τ = 3, respectively. By Theorem 2 we automatically get nearly-linear time encodable and decodable
codes with that rate.

1.2 Related work

Capacity theorems for channels with synchronization errors. The first work to study this
topic was by Dobrushin [Dob67], who obtained capacity theorems for channels that apply i.i.d. syn-
chronization errors. Recently, there has been interest in extending such capacity theorems beyond
i.i.d. errors. Mao, Diggavi, and Kannan [MDK18] consider channels combining synchronization
errors and (bounded) intersymbol interference as a model of nanopore-based sequencing. More
precisely, the behavior of the channel on input xi is some function of xi, xi−1, . . . , xi−ℓ, for some
memory threshold ℓ. They show that the information and coding capacity of these channels co-
incide, generalizing Dobrushin’s result [Dob67], but do not show that capacity is achieved by a
stationary ergodic (or Markov) source. Capacity theorems for a related (more concrete) model of
nanopore-based sequencing with noisy duplications have also been studied by McBain, Saunderson,
and Viterbo [MVS24, MSV24]. Li and Tan [LT21] consider a channel obtained from the concate-
nation of a standard deletion channel with i.i.d. deletions and a finite-state discrete memoryless
channel. They show that the capacity of this channel is achieved by Markov processes, which im-
plies that the polar codes developed by Tal, Pfister, Fazeli, and Vardy [TPFV22] achieve capacity
on the i.i.d. deletion channel (a special case of this result was proved earlier in [TPFV22]). Morozov
and Duman [MD24, MD25] show that information and coding capacities coincide for channels that
introduce deletions and insertions with Markovian memory, in the sense that the behavior of the
channel on the i-th input bit depends on the current state of an underlying stationary ergodic finite
state Markov chain (whose states are updated independently of past inputs). In [MD25] they also
give capacity upper bounds for the special case of a deletion channel with Markov memory where
the deletion probability applied independently to each input bit varies between a “low value” and a
“high value” according to a 2-state Markov chain (that evolves independently of the channel input).

The models we study are incomparable to those of [LT21, MD24, MD25], and our models and
capacity theorems generalize those of [MDK18]. We discuss the relationship to the model and results
of [MDK18] in more detail. In [MDK18], the channel behavior on the i-th input bit xi may depend
only on a bounded window of input bits. In contrast, in our channel model the error distribution for
the i-th input bit xi is some function of the whole input x, satisfying some additional assumptions.
We show in Section 4.1 that the channel model from [MDK18] satisfies the assumptions required
for the application of our capacity theorems, and so our results generalize the corresponding results
of [MDK18]. Moreover, we show that stationary ergodic sources achieve the information capacity
of these channels, which is particularly relevant for constructing efficient capacity-achieving codes.

Furthermore, our framework also captures interesting scenarios that fall outside the scope
of [MDK18]. In Section 4.2 we show that our framework implies capacity theorems for multi-
trace channels with correlated synchronization errors, where on input x the receiver learns multiple
i.i.d. realizations of the channel output Z(x). This setting is especially relevant in the context of

5

DNA-based data storage systems with nanopore-based sequencing [CGMR20, BLS20]. Also, in Sec-
tion 4.4 we show that our framework includes as special cases deletion channels where the deletion
of a bit xi may depend arbitrarily on the length of the run where xi is included (in particular,
beyond a bounded window around xi).

Efficient coding for channels with synchronization errors. There has been significant in-
terest in the design of efficiently encodable and decodable codes for channels with synchronization
errors. We discuss the progress most relevant to our work. Guruswami and Li [GL19] and later Con
and Shpilka [CS22] obtained efficient codes for the i.i.d. binary deletion channel with rate Θ(1− d),
where d is the deletion probability. Later, Tal, Pfister, Fazeli, and Vardy [TPFV22, PT21] and
later Tal and Arava [AT23] (combined with a result from [LT21]) designed efficient polar codes
achieving the capacity of a family of channels with i.i.d. insertions, deletions, and substitutions,
generalizing the i.i.d. deletion channel. Other constructions of efficient capacity-achieving codes for
channels with i.i.d. synchronization errors were presented in [Rub22, PLW22], which achieve slightly
faster decoding and slightly smaller decoding error probability than the polar coding constructions.
Of particular note, the general framework of Pernice, Li, and Wootters [PLW22] yields efficient
capacity-achieving codes for a large class of repeat channels – these are channels that independently
replicate each input bit according to some replication distribution over the naturals (e.g., Bernoulli,
Poisson, geometric).1 This was accomplished by combining a marker-based construction with the
capacity theorem of Dobrushin [Dob67], which applies to i.i.d. repeat channels.

Some works [CGMR20, BLS20] have studied efficiently encodable and decodable codes for the
multi-trace i.i.d. deletion channel. Their focus is on the case where the number of traces is allowed
to grow with the blocklength of the code. In contrast, in this work we consider the number of traces
to be a fixed constant, and we are then interested in devising efficient codes for that fixed number
of traces with rate as large as possible. These two settings are incomparable. Srinivasavaradhan,
Gopi, Pfister, and Yekhanin [SGPY21] study, among other things, codes for multi-trace channels
with i.i.d. insertions, deletions, and substitutions with a fixed number of traces. However, their
focus is different from ours and they only provide heuristic reconstruction procedures.

A common feature of the works discussed above is that they only consider channels with i.i.d.
synchronization errors. In contrast, we study channels with correlated synchronization errors. In
particular, we obtain a capacity theorem that applies to a wide class of (multi-trace) channels with
correlated synchronization errors, which we show can be used to design efficient capacity-achieving
codes for synchronization channels with relevant correlations.

2 Preliminaries

2.1 Notation

We denote random variables by uppercase roman letters such as X, Y , and Z. In this work, we will
only work with random variables supported on discrete sets. We use X → Y → Z to denote the
fact that these three random variables form a Markov chain (i.e., Z is conditionally independent of
X given Y), and write X ∼ Y if random variables X and Y follow the same distribution. We use
E[X] to denote the expected value of a random variable X supported on a subset of R, and H(X)
to denote its Shannon entropy.

1The existence of such efficient capacity-achieving codes does not mean that we now can determine the capacity
of these channels. We see the contribution of [TPFV22, PT21, Rub22, PLW22] mainly as turning capacity lower
bounds into efficient codes with the corresponding rate.

6

For a sequence x = (xi)i∈N, we use xnm to denote the subsequence xm, xm+1, . . . , xn. We use log
to denote the base-2 logarithm. For an integer n ≥ 1, we write [n] = {1, 2, . . . , n}.

2.2 Channels

We consider channels Z with finite input alphabet Σin and discrete output alphabet Σout. On input
x ∈ Σn

in, the channel outputs Z(x) according to some probabilistic rule. We allow the support of
Z(x) to be quite general – we will consider settings where Z(x) ∈ Σ∗

out for some discrete output
alphabet Σout, but also settings where Z(x) corresponds to multiple channel traces with input x, in
which case Z(x) ∈ (Σ∗

out)
t for some integer t ≥ 1.

Later on we will impose constraints on the behavior of Z(x) to obtain capacity theorems. We
will also write “Z(X), Z(Y)” to mean that Z is applied independently to the inputs X and Y .

2.3 Entropy and information rates for stochastic processes and notions of ca-
pacity

In this section, we define various types of “channel capacity”, and state some basic bounds.

Definition 1 (Entropy rate). For a process X = (Xi)i∈N, we define the entropy rate of X, denoted
by H(X), as

H(X) = lim inf
n→∞

H(Xn
1)

n
.

Definition 2 (Information rate). For a channel Z and input process X = (Xi)i∈N, we define the
information rate achievable by X over Z as

I(X;Z(X)) = lim inf
n→∞

I(Xn
1 ;Z(Xn

1))

n
.

Definition 3 (Information capacity). Given a channel Z, we define its information capacity, de-
noted by ICap(Z), as

ICap(Z) = lim inf
n→∞

sup
PXn

1

I(Xn
1 ;Z(Xn

1))

n
,

where the supremum is taken over all distributions of input processes X = (Xi)i∈N.

We now introduce some useful definitions about stochastic processes.

Definition 4 (Block-independent process). We say that a stochastic process X = (Xi)i∈N is block-
independent with blocklength b if for any integer t ≥ 1 and n = tb we have

Pr[Xn
1 = xn1] =

t∏
i=1

Pr[Xb
1 = xib(i−1)b+1].

Definition 5 (Stationary ergodic process). We say that a stochastic process X = (Xi)i∈N is sta-
tionary if (X1, . . . , Xn) ∼ (X1+τ , . . . , Xn+τ) for any integers n, τ ∈ N. Moreover, we say that X is
stationary ergodic if X is stationary and for any function f ∈ L1 we almost surely have

E[f(X1)] = lim
n→∞

1

n

n∑
j=1

f(Xj).

7

Definition 6 (Stationary capacity). Given a channel Z, we define its stationary capacity, denoted
by SCap(Z), as

SCap(Z) = sup
X

I(X;Z(X)),

where the supremum is taken over all stationary ergodic input processes X = (Xi)i∈N.

An input process X = {Xi}i∈N is m-th order Markov if

Pr[Xn = xn|Xn−1 = xn−1, . . . , X1 = x1] = Pr[Xn = xn|Xn−1 = xn−1, . . . , Xn−m = xn−m]

for any n and x1, . . . , xn.

Definition 7 (m-th order Markov capacity). Given a channel Z, we define its m-th order Markov
capacity, denoted by SCap(m)(Z), as

SCap(m)(Z) = sup
X

I(X;Z(X)),

where the supremum is taken over all m-th order stationary Markov input processes X = (Xi)i∈N.

Remark 1. We have ICap(Z) ≥ SCap(Z) ≥ SCap(m)(Z) for any channel Z and any integer m ≥ 0.

Before we define the coding capacity of a channel Z, we need some auxiliary definitions.

Definition 8 ((n,R, ε)-code for a channel). Let Z be a channel with finite input alphabet Σ and
output alphabet Σout. We say that C ⊆ Σn is an (n,R, ε)-code for Z if |C| ≥ 2Rn and there exists
a deterministic function Dec : Σ∗

out → Σn such that Pr[Dec(Z(C)) ̸= C] ≤ ε, where C is uniformly
distributed over C (i.e., the average decoding error probability of C is at most ε).

Definition 9 (Achievable rate). Let Z be a channel. We say that a real number R > 0 is an
achievable rate for Z if there exists a family of codes {Cn}n∈N and an integer n0 such that each Cn
is an (n,Rn, εn)-code for Z with Rn ≥ R for all n ≥ n0 and limn→∞ εn = 0.

Definition 10 (Coding capacity). Given a channel Z, we define its coding capacity, denoted by
CCap(Z), as the supremum of all R ≥ 0 that are achievable rates for Z.

Remark 2. It follows via Fano’s inequality that CCap(Z) ≤ ICap(Z) for any channel Z. See,
e.g., [PW24, Theorem 19.7].

2.4 A strengthening of Fekete’s lemma

We will use the following strengthening of Fekete’s lemma due to de Bruijn and Erdős [dBE52] (also
used in [MD24]). See [FR20] for an excellent discussion on this topic.

Lemma 1 (Strengthened Fekete’s lemma [dBE52]). Let (an)n∈N be a sequence that is “almost”
subadditive, in the sense that

an+m ≤ an + am + f(n+m)

for all n ≤ m ≤ 2n and some f such that
∑

n∈N f(n)/n2 converges. Then, limn→∞ an/n exists.

8

2.5 Concentration inequalities

In this paper, we shall use the following standard concentration inequalities.

Lemma 2 (Multiplicative Chernoff bound; see, e.g., [MU17, Theorems 4.4 and 4.5]). Suppose that
X1, . . . , Xn are i.i.d. random variables taking values in {0, 1}. Let X =

∑n
i=1Xi and µ = E[X].

Then, for any 0 < α < 1 we have

Pr[X > (1 + α)µ] < e−
µα2

3

and
Pr[X < (1− α)µ] < e−

µα2

2 .

Lemma 3 (Hoeffding’s inequality; see, e.g., [Ver18, Theorem 2.2.6]). Suppose that X1, . . . , Xn are
independent random variables with finite first and second moments and ai ≤ Xi ≤ bi for 1 ≤ i ≤ n.
Let X =

∑n
i=1Xi and µ = E[X]. Then, for any t > 0 we have

Pr[X − µ > t] < exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

3 Capacity theorems for channels with input-correlated synchro-
nization errors

3.1 Admissible channels

We will show capacity theorems for all channels Z (with finite input alphabet) for which there exists
a special associated channel Z⋆ with the properties below. We call Z admissible (with respect to
Z⋆) if the following holds.

1. Bounded output entropy: There exists a constant c > 0 such that for every input process
X = (Xi)i∈N and every integer n ≥ 1 we have H(Z⋆(Xn

1)) ≤ cn.

2. Rate preservation: For any process X = {Xi}i∈N we have I(X;Z(X)) = I(X;Z⋆(X)).

3. Concatenation: For any process X = {Xi}i∈N and indices 1 ≤ m ≤ n, we have that

Xn
1 → Z⋆(Xm

1), Z⋆(Xn
m+1) → Z⋆(Xn

1).

4. Partition:

(a) Prefix/suffix-partition: Fix any integer τ ≥ 1. Then, there exists a non-decreasing se-
quence γm = o(m) such that

∑
m∈N γm/m2 converges and for any process X = {Xi}i∈N

and integer n ≥ τ there exist random variables Wpre and Wsuf such that (1) Xn
1 →

Z⋆(Xn
1),Wpre → Z⋆(Xτ

1), Z
⋆(Xn

τ+1), (2) Xn
1 → Z⋆(Xn

1),Wsuf → Z⋆(Xn−τ
1), Z⋆(Xn

n−τ+1),
and (3) H(Wpre), H(Wsuf) ≤ γn.

(b) Amortized block-partition: There exists a sequence αm = o(m) such that for any
process X = {Xi}i∈N, blocklength b, and number of blocks t there exists a random
variable W such that Xtb

1 → Z⋆(Xtb
1),W → Z⋆(Xb

1), . . . , Z
⋆(Xtb

(t−1)b+1), and H(W) ≤
t · αb.

9

5. Amortized preimage size: There exists a sequence βm = o(m) such that for any process
X = {Xi}i∈N, blocklength b, and number of blocks t, there exists a random variable Y such
that Xtb

1 → Z⋆(Xb
1), . . . , Z

⋆(Xtb
(t−1)b+1) → Y and a deterministic function ϕ such that

Z⋆(Xtb
1) = ϕ(Z⋆(Xb

1), . . . , Z
⋆(Xtb

(t−1)b+1), Y)

and maxz log |ϕ−1(z)| ≤ t · βb.

We will prove the following results for admissible channels.

Theorem 4 (Capacity theorem for admissible channels). Suppose that Z is an admissible channel.
Then,

ICap(Z) = SCap(Z) = lim
m→∞

SCap(m)(Z) = CCap(Z).

The proof of Theorem 4 proceeds via a series of theorems, where we adapt and generalize ap-
proaches from [Dob67, LT21, MD24]. The equality ICap(Z) = SCap(Z) corresponds to Theorem 6 in
Section 3.3. The equality ICap(Z) = limm→∞ SCap(m)(Z) corresponds to Theorem 7 in Section 3.4.
The equality ICap(Z) = CCap(Z) corresponds to Theorem 9 in Section 3.5.

The next result follows in a standard manner from Theorem 4 using the approach of [PLW22],
and is relevant for the construction of efficient capacity-achieving codes for admissible channels.
For simplicity, we present it for channels with binary input alphabet. We prove this result in
Section 3.5.3.

Theorem 5 (Dense capacity-achieving codes for admissible channels). Let Z be an admissible
channel with binary input alphabet. Then, for any ε, ζ > 0 there exist γ ∈ (0, 1/2) and integers
b = b(ε, ζ) and t(ε, ζ) depending only on ε and ζ such that for all t ≥ t(ε, ζ) there exists a code C
with blocklength n = t · b, rate R ≥ ICap(Z) − ε, and maximal decoding error probability ε over Z

such that for all codewords c ∈ C we have γζn ≤ w(ci+ζn
i) ≤ (1− γ)ζn for all i ∈ [(1− ζ)n], where

w(·) denotes the Hamming weight.

The properties for admissibility laid out above are sufficient for Theorems 4 and 5 to hold, but
it is conceivable that they are not necessary. We leave it as an interesting direction for future work
to simplify the set of sufficient properties.

3.2 Existence of relevant limits for admissible channels

Let Z be an arbitrary admissible channel with respect to Z⋆. Via applications of Fekete’s lemma
(Lemma 1), we begin by showing that the limit inferior in the definitions of capacities and informa-
tion rates can be replaced by a limit.

Lemma 4. If Z is an admissible channel with respect to Z⋆, then

ICap(Z) = ICap(Z⋆) = lim
n→∞

sup
Xn

1

I(Xn
1 ;Z

⋆(Xn
1))

n
,

and the limit on the right-hand side exists.

Proof. By Lemma 1, it suffices to show that the sequence

an = sup
Xn

1

I(Xn
1 ;Z

⋆(Xn
1))

10

is subadditive, i.e., an+m ≤ an + am for all n,m. Using Item 3, the data processing inequality gives

an+m = sup
Xn+m

1

I(Xn+m
1 ;Z⋆(Xn+m

1))

≤ sup
Xn+m

1

I(Xn+m
1 ;Z⋆(Xn

1), Z
⋆(Xn+m

n+1))

= sup
Xn+m

1

[I(Xn+m
1 ;Z⋆(Xn

1)) + I(Xn+m
1 ;Z⋆(Xn+m

n+1)|Z⋆(Xn
1))]

= sup
Xn+m

1

[I(Xn
1 ;Z

⋆(Xn
1)) + I(Xn+m

1 ;Z⋆(Xn+m
n+1)|Z⋆(Xn

1))]

≤ sup
Xn+m

1

[I(Xn
1 ;Z

⋆(Xn
1)) + I(Xn+m

n+1 ;Z⋆(Xn+m
n+1))]

≤ sup
Xn

1

I(Xn
1 ;Z

⋆(Xn
1)) + sup

Xn+m
n+1

I(Xn+m
n+1 ;Z⋆(Xn+m

n+1))

= an + am.

The first inequality uses Item 3. The second inequality uses the fact that Xn
1 , X

n+m
n+1 → Xn+m

n+1 →
Z⋆(Xn+m

n+1), and so

I(Xn
1 , X

n+m
n+1 ;Z⋆(Xn+m

n+1)|Z⋆(Xn
1)) = H(Z⋆(Xn+m

n+1)|Z⋆(Xn
1))−H(Z⋆(Xn+m

n+1)|Xn
1 , X

n+m
n+1 , Z⋆(Xn

1))

= H(Z⋆(Xn+m
n+1)|Z⋆(Xn

1))−H(Z⋆(Xn+m
n+1)|Xn+m

n+1)

≤ H(Z⋆(Xn+m
n+1))−H(Z⋆(Xn+m

n+1)|Xn+m
n+1)

= I(Xn+m
n+1 ;Z⋆(Xn+m

n+1)).

The third inequality holds because the quantity on the fifth line is maximized by taking Xn
1 and

Xn+m
n+1 to be independent, since Z⋆ is acting independently on each of Xn

1 and Xn+m
n+1 .

Lemma 5. Let X be an arbitrary stationary process and Z an admissible channel with respect to
Z⋆. Then,

I(X;Z(X)) = I(X;Z⋆(X)) = lim
n→∞

I(Xn
1 ;Z

⋆(Xn
1))

n
,

the limit on the right-hand side exists, and SCap(Z) = SCap(Z⋆).

Proof. Again, by Lemma 1 it suffices to show that an = I(Xn
1 ;Z

⋆(Xn
1)) is a subadditive sequence.

We have

an+m = I(Xn+m
1 ;Z⋆(Xn+m

1))

≤ I(Xn+m
1 ;Z⋆(Xn

1), Z
⋆(Xn+m

n+1))

= I(Xn
1 , X

n+m
n+1 ;Z⋆(Xn

1)) + I(Xn
1 , X

n+m
n+1 ;Z⋆(Xn+m

n+1)|Z⋆(Xn
1))

= I(Xn
1 ;Z

⋆(Xn
1)) + I(Xn

1 , X
n+m
n+1 ;Z⋆(Xn+m

n+1)|Z⋆(Xn
1))

≤ I(Xn
1 ;Z

⋆(Xn
1)) + I(Xn+m

n+1 ;Z⋆(Xn+m
n+1))

= I(Xn
1 ;Z

⋆(Xn
1)) + I(Xm

1 ;Z⋆(Xm
1))

= an + am,

as desired. The first inequality uses Item 3. The second equality follows from the chain rule for
mutual information. The third equality uses the fact that Xn

1 , X
n+m
n+1 → Xn

1 → Z⋆(Xn
1). The

second inequality uses the fact that Xn
1 , X

n+m
n+1 → Xn+m

n+1 → Z⋆(Xn+m
n+1), analogously to the proof of

Lemma 4. The fourth equality uses the fact that X is stationary, and so Xn+m
n+1 ∼ Xm

1 .

11

Lemma 6. Let X be a block independent process and suppose that Z is admissible with respect to
Z⋆. Then,

I(X;Z(X)) = I(X;Z⋆(X)) = lim
n→∞

I(Xn
1 ;Z

⋆(Xn
1))

n
,

and the limit on the right-hand side exists.

Proof. Consider the sequence an = I(Xn
1 ;Z

⋆(Xn
1)). Let b be the blocklength of X. Then, by Item 3,

for any m,n > b we have

an+m = I(Xn+m
1 ;Z⋆(Xn+m

1))

≤ I(Xn+m
1 ;Z⋆(Xn

1), Z
⋆(Xn+m

n+1))

≤ I(Xn
1 ;Z

⋆(Xn
1)) + I(Xn+m

n+1 ;Z⋆(Xn+m
n+1)).

Construct X ′ by trimming bits from the beginning of Xn+m
n+1 so that X ′ = Xn+m

tb+1 for an integer t
for which n + 1 − (tb + 1) ≤ b. If m′ denotes the length of X ′, from the block independence of X
we get that

I(X ′;Z⋆(X ′)) = I(Xm′
1 ;Z⋆(Xm′

1)).

Since we trim r < b symbols from Xn+m
n+1 to obtain X ′, we have

I(Xn+m
n+1 ;Z⋆(Xn+m

n+1)) ≤ I(Xn+m
n+1 ;Z⋆(Xtb

n+1), Z
⋆(Xn+m

tb+1))

≤ I(Xn+m
tb+1 ;Z

⋆(Xn+m
tb+1)) +H(Z⋆(Xtb

n+1))

≤ I(Xn+m
tb+1 ;Z

⋆(Xn+m
tb+1)) + cb

= I(Xm′
1 ;Z⋆(Xm′

1)) + cb

≤ I(Xm
1 ;Z⋆(Xm′

1), Z⋆(Xm
m′+1)) + cb

≤ I(Xm
1 ;Z⋆(Xm

1)) + γm + cb

for a non-decreasing sequence γm = o(m) such that
∑

m∈N γm/m2 converges. The first inequality
uses Item 3. The third inequality uses Item 1 (more precisely, H(Z⋆(Xtb

n+1)) ≤ c(tb−(n+1)) ≤ cb for
a fixed constant c > 0. The first equality uses the block independence of X. The fourth inequality
follows from the chain rule for mutual information. The fifth inequality uses Item 4a with τ = r < b.

Therefore, we conclude that for any b < n ≤ m ≤ 2n we have an+m ≤ an+am+f(n+m), where
f(n) = γn + cb (here, we use that γm is non-decreasing). Since

∑
n∈N f(n)/n2 converges (because∑

n∈N γn/n
2 converges by Item 4a), Lemma 1 implies that limn→∞ an/n exists, as desired.

3.3 Information capacity of admissible channels is achieved by stationary er-
godic process

We show the following.

Theorem 6. Suppose that the channel Z is admissible. Then,

ICap(Z) = SCap(Z).

Suppose that Z is admissible with respect to Z⋆. By Item 2, it suffices to show that Theorem 6
holds for Z⋆. Fix an arbitrary ε > 0. Recalling Lemma 4, let b be a sufficiently large integer so that

sup
X̃b

1

I(X̃b
1;Z

⋆(X̃b
1))

b
≥ lim

n→∞
sup
X̃n

1

I(X̃n
1 ;Z

⋆(X̃n
1))

n
− ε = ICap(Z⋆)− ε.

12

Furthermore, let Xb
1 be such that

I(Xb
1;Z

⋆(Xb
1))

b
≥ sup

X̃b
1

I(X̃b
1;Z

⋆(X̃b
1))

b
− ε ≥ ICap(Z⋆)− 2ε. (1)

Let pXb
1
(·) denote the correspoding PMF. Using the approach of [Fei59, LT21], consider the following

process X. First, define the block independent process X̂ = {X̂i}i∈N with blocklength b and
probability mass function

pX̂tb
1
(xtb1) =

t∏
i=1

pXb
1
(xib(i−1)b+1).

Write X̂ [j]
i = X̂i+j . Let V be uniformly distributed over {0, 1, . . . , b−1}, and set Xi = X̂

[V]
i = X̂i+V

for every i ∈ N. Then, it holds that X is stationary and ergodic.
By Lemma 5, we know that I(X;Z⋆(X)) = limn→∞

I(X
n
1 ;Z

⋆(X
n
1))

n since X is stationary. We will
show that

I(X;Z⋆(X)) ≥ I(Xb
1;Z

⋆(Xb
1))

b
− ε. (2)

Combined with Equation (1), this implies that

SCap(Z⋆) ≥ I(X;Z⋆(X)) ≥ ICap(Z⋆)− 3ε.

Since ε was arbitrary, it follows that SCap(Z⋆) = ICap(Z⋆), and so also SCap(Z) = ICap(Z). This
yields Theorem 6.

It remains to show Equation (2). We do this by a combination of two lemmas.

Lemma 7. We have

I(X;Z⋆(X)) =

b−1∑
j=0

1

b
I(X̂ [j];Z⋆(X̂ [j])) = I(X̂;Z⋆(X̂)),

and these limits exist.

Proof. First, we prove that
I(X̂ [j];Z⋆(X̂ [j])) = I(X̂;Z⋆(X̂))

for all j ∈ {0, 1, . . . , b − 1} (in particular, these quantities exist for all 0 ≤ j < b, since X̂ is
stationary). For the sake of exposition we focus on j = 1. The argument is analogous for other
choices of j. First, note that by Item 4a with τ = b − 1 there exists a sequence γm such that
γm = o(m) and

∑
m∈N γm/m2 converges and a random variable W such that H(W) ≤ γtb and

Z⋆(X̂
[1]b−1
1), Z⋆(X̂

[1]tb−1
b) is completely determined by Z⋆(X̂

[1]tb−1
1),W . Furthermore, by Item 3,

Z⋆(X̂
[1]b−1
1), Z⋆(X̂

[1]tb−1
b) completely determine Z⋆(X̂

[1]tb−1
1). This means that

I(X̂
[1]tb−1
1 ;Z⋆(X̂

[1]tb−1
1)) ≤ I(X̂

[1]tb−1
1 ;Z⋆(X̂

[1]b−1
1), Z⋆(X̂

[1]tb−1
b)) (3)

and

I(X̂
[1]tb−1
1 ;Z⋆(X̂

[1]tb−1
1)) ≥ I(X̂

[1]tb−1
1 ;Z⋆(X̂

[1]b−1
1), Z⋆(X̂

[1]tb−1
b))−H(W)

≥ I(X̂n+m
1 ;Z⋆(X̂n

1), Z
⋆(X̂n+m

n+1))− γtb. (4)

13

Therefore,

I(X̂
[1]tb−1
1 ;Z⋆(X̂

[1]tb−1
1)) ≥ I(X̂

[1]b−1
1 , X̂

[1]tb−1
b ;Z⋆(X̂

[1]b−1
1), Z⋆(X̂

[1]tb−1
b))− γtb

= I(X̂
[1]b−1
1 ;Z⋆(X̂

[1]b−1
1), Z⋆(X̂

[1]tb−1
b))

+ I(X̂
[1]tb−1
b ;Z⋆(X̂

[1]b−1
1), Z⋆(X̂

[1]tb−1
b)|X̂ [1]b−1

1)− γtb

≥ I(X̂
[1]tb−1
b ;Z⋆(X̂

[1]b−1
1), Z⋆(X̂

[1]tb−1
b)|X̂ [1]b−1

1)− γtb

= I(X̂
[1]tb−1
b ;Z⋆(X̂

[1]tb−1
b))− γtb

= I(X̂tb
b+1;Z

⋆(X̂tb
b+1))− γtb

= I(X̂
(t−1)b
1 ;Z⋆(X̂

(t−1)b
1))− γtb.

The first inequality uses Equation (4). The second and fourth equalities use the fact that X̂ is
block-independent with blocklength b, and so X̂

[1]tb−1
b is independent of X̂ [1]b−1

1 and is identically
distributed to X̂

(t−1)b
1 . Similarly,

I(X̂
[1]tb−1
1 ;Z⋆(X̂

[1]tb−1
1)) ≤ I(X̂

[1]b−1
1 , X̂

[1]tb−1
b ;Z⋆(X̂

[1]b−1
1), Z⋆(X̂

[1]tb−1
b))

= I(X̂
[1]b−1
1 ;Z⋆(X̂

[1]b−1
1), Z⋆(X̂

[1]tb−1
b))

+ I(X̂
[1]tb−1
b ;Z⋆(X̂

[1]b−1
1), Z⋆(X̂

[1]tb−1
b)|X̂ [1]b−1

1)

≤ I(X̂
[1]tb−1
b ;Z⋆(X̂

[1]b−1
1), Z⋆(X̂

[1]tb−1
b)|X̂ [1]b−1

1) + b log |Σin|

= I(X̂
[1]tb−1
b ;Z⋆(X̂

[1]tb−1
b)) + b log |Σin|

= I(X̂tb
b+1;Z

⋆(X̂tb
b+1)) + b log |Σin|

= I(X̂
(t−1)b
1 ;Z⋆(X̂

(t−1)b
1)) + b log |Σin|,

where the first inequality uses Equation (3) and the second inequality uses the fact that H(X̂
[1]b−1
1) ≤

b log |Σin|. As a result, we conclude that (below, we write a ± δ for a real number in the interval
[a− δ, a+ δ])

I(X̂ [1];Z⋆(X̂ [1])) = lim
t→∞

I(X̂
[1]tb−1
1 ;Z⋆(X̂

[1]tb−1
1))

tb− 1

= lim
t→∞

I(X̂
(t−1)b
1 ;Z⋆(X̂

(t−1)b
1))± (b log |Σin|+ γtb)

tb− 1

= lim
t→∞

(t− 1)b

tb− 1
· I(X̂

(t−1)b
1 ;Z⋆(X̂

(t−1)b
1))± (b log |Σin|+ γtb)

(t− 1)b

= lim
t→∞

I(X̂
(t−1)b
1 ;Z⋆(X̂

(t−1)b
1))

(t− 1)b

= I(X̂;Z(X̂)).

The fourth equality uses the fact that |Σin| is a finite constant and limt→∞
γtb

(t−1)b = 0, since γtb =

o(tb). Furthermore, Lemma 6 guarantees that I(X̂;Z(X̂)) exists.
It remains to see the leftmost inequality of the lemma statement. First, note that

I(X;Z⋆(X)) = I(X;Z⋆(X)|V) = lim
n→∞

I(X
n
1 ;Z

⋆(X
n
1)|V)

n
. (5)

14

This holds since H(V) ≤ log b and b is a fixed constant. Furthermore,

I(X;Z⋆(X)|V) = lim
n→∞

I(X
n
1 ;Z

⋆(X
n
1)|V)

n

= lim
n→∞

1
b

∑b−1
j=0 I(X

n
1 ;Z

⋆(X
n
1)|V = j)

n

= lim
n→∞

1
b

∑b−1
j=0 I(X̂

[j]n
1 ;Z⋆(X̂

[j]n
1))

n
. (6)

As we saw above, the limits

I(X̂ [j];Z⋆(X̂ [j])) = lim
n→∞

I(X̂
[j]n
1 ;Z⋆(X̂

[j]n
1))

n

exist and equal I(X̂;Z⋆(X̂)) for all j. Therefore, since the sum over j is finite, we can swap limit
and sum and conclude from Equations (5) and (6) that

I(X;Z⋆(X)) = I(X;Z⋆(X)|V)

=
1

b

b−1∑
j=0

lim
n→∞

I(X̂
[j]n
1 ;Z⋆(X̂

[j]n
1))

n

=
1

b

b−1∑
j=0

I(X̂ [j];Z⋆(X̂ [j]))

= I(X̂;Z⋆(X̂)),

as desired.

Lemma 8. Suppose that X̂ is a block independent process with blocklength b. Then, we have∣∣∣∣∣I(X̂;Z⋆(X̂))− I(X̂b
1;Z

⋆(X̂b
1))

b

∣∣∣∣∣ ≤ αb/b,

where limb→∞
αb
b = 0.

Proof. By Item 4b, there exists a random variable W with H(W) ≤ t · αb such that the sequences
Z⋆(X̂b

1), Z
⋆(X̂2b

b+1), . . . , Z
⋆(X̂tb

(t−1)b+1) are completely determined by Z⋆(X̂tb
1) and W . Therefore,

I(X̂tb
1 ;Z⋆(X̂tb

1)) ≥ I(X̂tb
1 ;Z⋆(X̂b

1), Z
⋆(X̂2b

b+1), . . . , Z
⋆(X̂tb

(t−1)b+1))− t · αb

=

t∑
i=1

I(X̂ib
(i−1)b+1;Z

⋆(X̂ib
(i−1)b+1))− t · αb

=
t∑

i=1

I(X̂b
1;Z

⋆(X̂b
1))− t · αb

= t(I(X̂b
1;Z

⋆(X̂b
1))− αb).

Consequently,

I(X̂;Z⋆(X̂)) = lim
t→∞

I(X̂tb
1 ;Z⋆(X̂tb

1))

tb
≥ I(X̂b

1;Z
⋆(X̂b

1))− αb

b
.

15

On the other hand, by Item 3 we have

I(X̂b
1;Z

⋆(X̂b
1))

b
=

I(X̂tb
1 ;Z⋆(X̂b

1), Z
⋆(X̂2b

b+1), . . . , Z
⋆(X̂tb

(t−1)b+1))

tb
≥ I(X̂tb

1 ;Z⋆(X̂tb
1))

tb

for all t and b, and so I(Xb
1 ;Z

⋆(Xb
1))

b ≥ I(X̂;Z⋆(X̂)).

3.4 Information capacity of admissible channels is achieved by Markov process

We use Theorem 6 to show the following.

Theorem 7. Suppose that the channel Z is admissible. Then,

ICap(Z) = lim
m→∞

SCap(m)(Z).

Proof. Given ε > 0, let X be a stationary ergodic input process and b a large enough integer such
that

I(Xb
1;Z

⋆(Xb
1))

b
≥ ICap(Z)− ε.

Such a process X and integer b are guaranteed to exist by Item 2 and Theorem 6. Let X̂ be the
stationary (b− 1)-th order Markov process satisfying

pX̂b
1
(xb1) = pXb

1
(xb1).

We will show that

I(X̂;Z(X̂)) = I(X̂;Z⋆(X̂)) ≥ I(Xb
1;Z

⋆(Xb
1))

b
− αb

b
, (7)

with limb→∞
αb
b = 0, where the first equality holds by Item 2. Taking b to be large enough, we get

that I(X̂;Z(X̂)) ≥ ICap(Z)− 2ε, and, since ε was arbitrary, the theorem statement follows.
Since X̂ is a Markov process, we have H(X̂) ≥ H(X). Therefore, it is enough to prove that

H(X̂|Z⋆(X̂)) ≤ H(Xb
1|Z⋆(Xb

1))

b
+

αb

b
. (8)

We have

H(X̂|Z⋆(X̂)) = lim
t→∞

H(X̂tb
1 |Z⋆(X̂tb

1))

tb

≤ lim
t→∞

H(X̂tb
1 |Z⋆(X̂b

1), . . . , Z
⋆(Xtb

(t−1)b+1)) + t · αb

tb

= lim
t→∞

∑t
i=1H(X̂ib

(i−1)b+1|X̂
(i−1)b
1 , Z⋆(X̂b

1), . . . , Z
⋆(Xtb

(t−1)b+1)) + t · αb

tb

≤ lim
t→∞

∑t
i=1H(X̂ib

(i−1)b+1|Z
⋆(X̂ib

(i−1)b+1)) + t · αb

tb

= lim
t→∞

∑t
i=1H(X̂b

1|Z⋆(X̂b
1)) + t · αb

tb

=
H(Xb

1|Z⋆(Xb
1))

b
+

αb

b
,

as desired. The first inequality uses Item 4b. The second equality uses the chain rule for conditional
entropy. The second inequality holds since further conditioning does not increase entropy. The third
equality uses the stationarity of X.

16

3.5 Coding capacity equals information capacity, and existence of dense codes
from stationary ergodic processes

In this section, we begin by establishing suitable convergence of the information density of block-
independent processes to their information rate for admissible channels. We use this result in two
ways. First, we use it to show that CCap(Z) = ICap(Z). Second, focusing on admissible channels
with binary input for simplicity, we apply this result to stationary ergodic processes (which by
Theorem 6 achieve information capacity on admissible channels) to conclude that there exist “dense”
codes C that achieve capacity on Z, where “dense” means that every short substring of c ∈ C
contains a decent fraction of 1s. As already pointed out in [PLW22], this property is relevant for
the construction of efficient capacity-achieving codes for these channels.

3.5.1 Convergence of information density for block-independent process

For two random variables X,Y , we define their information density iX,Y as

iX,Y (x, y) = log

(
pXY (x, y)

pX(x) · pY (y)

)
.

Note that E(x,y)∼pX,Y
[iX,Y (x, y)] = I(X;Y). We show the following.

Theorem 8. Let Z be an admissible channel with respect to Z⋆. Fix ε > 0 and let (αn)n∈N and
(βn)n∈N be the sequences guaranteed by Item 4b and Item 5. Let X be a block-independent process
with blocklength b such that

max(αb/b, βb/b) ≤ ε2/3.

Then, there exists a constant t0 (possibly depending on ε, b, and ε) such that for all t ≥ t0 we have

Pr
(x,z)∼Xtb

1 ,Z(Xtb
1)

[∣∣∣∣∣ iXtb
1 ,Z(Xtb

1)(x, z)

tb
− I(X;Z(X))

∣∣∣∣∣ ≤ ε

]
≥ 1− ε.

Before we prove Theorem 8 we establish some useful lemmas. We will start by working with the
Z⋆ channel.

Lemma 9. Suppose that X is a block-independent process with blocklength b. Let

η⋆t = (Z⋆(Xb
1), Z

⋆(X2b
b+1), . . . , Z

⋆(Xtb
(t−1)b+1)).

Then,

iXtb
1 ,η⋆t

(x, z) =
t∑

i=1

iXb
1 ,Z

⋆(Xb
1)
(x(i), z(i)), (9)

where x(i), z(i) denote the i-th blocks of x and z, respectively. In particular, 1
tb iXtb

1 ,η⋆t
(Xtb

1 , η⋆t) con-

verges almost surely to I(Xb
1 ;Z

⋆(Xb
1))

b as t → ∞.

Proof. Equation (9) follows from the fact that pXtb
1 ,η⋆t,b

(x, z) =
∏t

i=1 pXb
1 ,Z

⋆(Xb
1)
(x(i), z(i)) by block-

independence of X (with blocklength b). The statement about convergence then follows from the
strong law of large numbers, since the random variables iXb

1 ,Z
⋆(Xb

1)
(Xib

(i−1)b+1, Z
⋆(Xib

(i−1)b+1)) are
i.i.d. for all i ∈ [t] and their expectation is I(Xb

1;Z
⋆(Xb

1)).

17

For a given input Xtb
1 , we will couple the η⋆t and Z⋆(Xtb

1) processes with the help of Item 5.
Let Yt be the random variable such that η⋆t → Yt and ϕ the deterministic function such that
Z⋆(Xtb

1) = ϕ(η⋆t , Yt) and maxz log |ϕ−1(z)| ≤ t · βb, guaranteed by Item 5.

Lemma 10. We have

E(x,z,y)∼Xtb
1 ,η⋆t ,Yt

[
|iXtb

1 ,η⋆t
(x, z)− iXtb

1 ,Z⋆(Xtb
1)(x, ϕ(z, y))

]
= E(x,z,y)∼Xtb

1 ,η⋆t ,Yt

[
|iXtb

1 ,η⋆t ,Yt
(x, z, y)− iXtb

1 ,Z⋆(Xtb
1)(x, ϕ(z, y))

]
≤ max

z
log |ϕ−1(z)|

≤ t · βb.

The proof of this lemma relies on the following simple but useful fact about information densities,
due to Dobrushin [Dob67].

Lemma 11 ([Dob67]). Let ϕ : A → B be a deterministic function with A and B finite sets, and
write Mϕ = maxz∈B |ϕ−1(z)| for the size of the largest preimage of ϕ. Let A be supported on A, and
define B = ϕ(A). Then,

E(x,a)∼X,A[|iX,A(x, a)− iX,B(x, ϕ(a))|] ≤ logMϕ.

We are now ready to proceed with the proof of Lemma 10.

Proof of Lemma 10. The first equality follows from the fact that

iXtb
1 ,η⋆t ,Yt

(x, z, y) = iXtb
1 ,η⋆t

(x, z)

for all (x, z, y) in the support of (Xtb
1 , η⋆t , Yt), since Xtb

1 → η⋆t → η⋆t , Yt. The inequality follows from
Lemma 11 with X = Xtb

1 and A = (η⋆t , Yt). The last equality follows from the hypothesis on ϕ,
guaranteed by Item 5.

We are now ready to prove Theorem 8.

Proof of Theorem 8. Since X is block-independent with blocklength b, by Lemma 8 we have∣∣∣∣I(Xb
1;Z

⋆(Xb
1))

b
− I(X;Z⋆(X))

∣∣∣∣ ≤ αb

b
≤ ε/3, (10)

where the last inequality uses the hypothesis on b from the theorem statement. Therefore, it is
enough to show that

Pr
(x,z)∼Xtb

1 ,Z⋆(Xtb
1)

[∣∣∣∣∣ iXtb
1 ,Z⋆(Xtb

1)(x, z)

tb
− I(Xb

1;Z
⋆(Xb

1))

b

∣∣∣∣∣ ≤ 2ε/3

]
≥ 1− ε. (11)

First, by the triangle inequality, we have

Pr
(x,z)∼Xtb

1 ,Z⋆(Xtb
1)

[∣∣∣∣∣ iXtb
1 ,Z⋆(Xtb

1)(x, z)

tb
− I(Xb

1;Z
⋆(Xb

1))

b

∣∣∣∣∣ ≤ 2ε/3

]

≤ Pr
(x,z⋆,y)∼Xtb

1 ,η⋆t ,Yt

[∣∣∣∣∣ iXtb
1 ,η⋆t

(x, z⋆)

tb
−

iXtb
1 ,Z⋆(Xtb

1)(x, ϕ(z
⋆, y))

tb

∣∣∣∣∣ ≤ ε/3

]

18

+ Pr
(x,z⋆)∼Xtb

1 ,η⋆t

[∣∣∣∣∣ iXtb
1 ,η⋆t

(x, z⋆)

tb
− I(Xb

1;Z
⋆(Xb

1))

b

∣∣∣∣∣ ≤ ε/3

]
. (12)

We analyze the two terms in the sum separately. For the first term, combining Lemma 10 with
Markov’s inequality yields

Pr
(x,z⋆,w)∼Xtb

1 ,η⋆t ,Wt

[∣∣∣∣∣ iXtb
1 ,η⋆(x, z

⋆)

tb
−

iXtb
1 ,Z⋆(Xtb

1)(x, ϕ(z
⋆, w))

tb

∣∣∣∣∣ > ε/3

]
≤ maxz log |ϕ−1(z)|

εtb

≤ βb
εb

≤ ε/2, (13)

where the last inequality holds by the hypothesis on b from the theorem statement. For the second
term, by Lemma 9, for all t ≥ t0 with t0 a sufficiently large constant depending on ε, b, and X, we
have

Pr
(x,z⋆)∼Xtb

1 ,η⋆t

[∣∣∣∣∣ iXtb
1 ,η⋆t

(x, z⋆)

tb
− I(Xb

1;Z
⋆(Xb

1))

b

∣∣∣∣∣ > ε/3

]
≤ ε/2. (14)

Combining Equation (12) with Equations (13) and (14) yields Equation (11), as desired.

3.5.2 Capacity-achieving codes for admissible channels

Theorem 8 implies, via standard methods, that the coding capacity and information capacity of
admissible channels coincide. For completeness, we discuss this in detail. Later in Section 3.5.3 we
combine Theorems 6 and 8 to show the existence of “dense” capacity-achieving codes suitable for
bootstrapping efficient constructions.

We begin by relying on the following well-known theorem that formalizes the guarantees of MAP
decoding.

Lemma 12 ([PW24, Theorem 18.5], adapted). Fix an input random variable X supported on Σn
in

and a channel Z with input alphabet Σin. Then, for any τ > 0 there exists a code C with blocklength
n, size M , and average decoding error probability ε satisfying

ε ≤ Pr
(x,z)∼X,Z(X)

[iX,Z(X)(x, z) ≤ logM + τ] + 2−τ .

The code guaranteed by Lemma 12 is obtained by sampling M codewords i.i.d. according to X.
We briefly discuss how Lemma 12 can be combined with Theorem 8 to obtain codes with arbitrarily
small decoding error probability and the desired rate for an arbitrary admissible channel.

Corollary 1. Let Z be an admissible channel. Fix an arbitrary ε > 0. Then, there exists a constant
b(ε) such that for any b ≥ b(ε) and any block-independent input process X with blocklength b there
exists a constant t(ε, b,X) such that for any t ≥ t(ε, b,X) there exists an (n = tb, R, ε)-code for Z
with R ≥ I(X;Z(X))− ε.

Proof. Fix ε > 0 and let b(ε), t(ε) be the constants guaranteed by Theorem 8. Consider any block-
independent input process X with blocklength b ≥ b(ε) and number of blocks t ≥ t(ε). Set n = tb,
M = 2n(I(X;Z(X))−3ε), and τ = εn. By Lemma 12, there exists an (n = tb, R, λ)-code for Z with

λ ≤ Pr
(x,z)∼Xn

1 ,Z(Xn
1)
[iXn

1 ,Z(Xn
1)
(x, z) ≤ logM + τ] + 2−τ

19

= Pr
(x,z)∼Xn

1 ,Z(Xn
1)

[
iXn

1 ,Z(Xn
1)
(x, z)

n
≤ I(X;Z(X))− 2ε

]
+ 2−εn

≤ ε+ 2−εn,

where the last inequality follows from Theorem 8. Now, we may set b(ε) and t(ε) large enough as
a function of ε so that 2−εn ≤ ε, and so λ ≤ 2ε.

Extension to all blocklengths. We now argue how Corollary 1 can be extended to all block-
lengths, which shows that for any admissible channel Z the coding capacity equals the information
capacity.

Theorem 9. Suppose that Z is an admissible channel. Then, ICap(Z) = CCap(Z).

Proof. We begin by considering the following “trimming” version of Z, which we denote by Z ′. On
input x, this channel first sends x through Z to obtain output Z(x), and then trims the maximal
substring of 0s at the end of Z(x). Since Z ′ is a degraded version of Z, for any input process X we
have I(X;Z ′(X)) ≤ I(X;Z(X)). Also, Z(Xn

1) is completely determined by Z ′(Xn
1) and the length

L of the run of 0s trimmed from the end of Z(Xn
1) to obtain Z ′(Xn

1). Since H(L) ≤ log n, this
means that I(Xn

1 ;Z
′(Xn

1)) ≥ I(Xn
1 ;Z(Xn

1))−
logn
n → I(X;Z(X)) as n → ∞. We conclude that Z ′

is also admissible with respect to Z⋆ and ICap(Z ′) = ICap(Z).
Fix an arbitrary ε > 0 and a block-independent process X with block length b = b(ε) such that

I(X;Z ′(X)) ≥ ICap(Z ′)− ε (the existence of such a process follows, e.g., from the discussion after
Equation (1)). By Corollary 1 applied to Z ′ and X, there exists a family of codes {Ctb}t∈N such that
Ctb is a (tb, Rtb, εtb)-code with Rtb ≥ I(X;Z ′(X)) − ε and εtb ≤ ε for all large enough t ≥ t(ε,X).
We extend this family to all blocklengths n as follows. For n < t(ε)b(ε), we set Cn = Σn

in. For
tb < n < (t + 1)b with t ≥ t(ε,X), we construct an (n,Rn, εn)-code Cn by appending a run of
n − tb < b 0s to codewords of Ctb. First, note that since Z ′ trims all 0s at the end of a codeword,
the decoding error probability of Cn equals that of Ctb, and so εn = εtb ≤ ε for all large enough n
depending only on ε. Second, Rn = Rtb · tb

(t+1)b ≥ Rtb − ε for all large enough n (again, depending
on ε and X).

Now, for each k ∈ N define ε(k) = 1/k and the associated family {C(k)
n }n∈N of (n,R(k)

n , ε
(k)
n)-

codes guaranteed by the last paragraph, where R
(k)
n ≥ ICap(Z ′) − 2ε(k) and ε

(k)
n ≤ ε(k) for all

large enough n ≥ n(k) (note that the choice of input process X is fixed for each k ∈ N, so n(k)
really only depends on k). Taking codes from the k-th family for every blocklength n between n(k)
and n(k + 1), we get a family of codes {Cn}n∈N where each Cn is an (n,Rn, εn)-code for Z ′ with
Rn → I(X;Z ′(X)) and εn → 0 as n → ∞. Furthermore, since Z ′ is a degraded version of Z, we
also have that each Cn is an (n,Rn, εn)-code for Z. Since ICap(Z) = ICap(Z ′), we conclude that
CCap(Z) = CCap(Z ′) = ICap(Z ′) = ICap(Z).

3.5.3 Dense capacity-achieving codes for admissible channels

In the previous section we showed that the coding capacity and information capacity of an admis-
sible channel are the same. However, this alone is not sufficient if we wish to obtain efficiently
encodable and decodable capacity-achieving codes for an admissible channel. In this section, follow-
ing the approach of [PLW22], we combine the fact that capacity is achieved by stationary ergodic
processes (Theorem 6) with Theorem 8 to show the existence of capacity-achieving codes with
density properties for admissible channels as stated in Theorem 5, useful for constructing efficient

20

capacity-achieving codes.2 For simplicity we will focus on admissible channels with binary input
alphabet, although our discussion generalizes further. We restate Theorem 5 here for convenience.

Theorem 5 (Dense capacity-achieving codes for admissible channels). Let Z be an admissible
channel with binary input alphabet. Then, for any ε, ζ > 0 there exist γ ∈ (0, 1/2) and integers
b = b(ε, ζ) and t(ε, ζ) depending only on ε and ζ such that for all t ≥ t(ε, ζ) there exists a code C
with blocklength n = t · b, rate R ≥ ICap(Z) − ε, and maximal decoding error probability ε over Z

such that for all codewords c ∈ C we have γζn ≤ w(ci+ζn
i) ≤ (1− γ)ζn for all i ∈ [(1− ζ)n], where

w(·) denotes the Hamming weight.

Our proof of Theorem 5 will rely on the following lemma proved in [PLW22].

Lemma 13 ([PLW22, Proposition 3.4], adapted). Let X be a stationary ergodic process supported
on {0, 1} with Pr[X1 = 1] ∈ (0, 1). Then, for any ζ > 0 there exists γ ∈ (0, 1/2) and an integer
n0 > 0 such that the following holds for all n ≥ n0. With probability at least 0.99 over the sampling
of x ∼ Xn

1 , we have γζn ≤ w(xi+ζn
i) ≤ (1 − γ)ζn for all i ∈ [(1 − ζ)n], where w(·) denotes the

Hamming weight.

Proof of Theorem 5. Let Z be an arbitrary admissible channel with binary input alphabet. Let
X be a stationary ergodic process such that I(X;Z(X)) > 0. Then, it must be the case that
Pr[X1 = 1] ∈ (0, 1), and so Lemma 13 applies to X with some constants ζ > 0, γ ∈ (0, 1/2), and
n0.

It will be slightly easier to work with a block-independent process. Fix ε > 0. From the
proof of Theorem 6 in Section 3.3, we know that there is a stationary ergodic process X such that
I(X;Z(X)) ≥ ICap(Z)−ε, and moreover X is created by choosing an appropriate block-independent
process X̂ with blocklength b(ε), then choosing a uniformly random starting point in the first block
of X̂, and starting X̂ from that point. Since X is obtained from X̂ by trimming at most b bits
from the beginning of X̂, we conclude that X̂ also satisfies the properties laid out in Lemma 13
with possibly a slightly smaller γ and slightly larger n0. Recalling that the code C guaranteed by
Corollary 1 applied to Z and X̂ is obtained by sampling codewords i.i.d. according to X̂n

1 yields
Theorem 5. This is because with high probability more than a 0.9-fraction of codewords c ∈ C will
satisfy γζn ≤ w(ci+ζn

i) ≤ (1−γ)ζn for all i ∈ [(1− ζ)n], and throwing away all codewords of C that
do not satisfy this property will not affect the asymptotic rate.

4 Some special cases of our capacity theorems

4.1 The Mao-Diggavi-Kannan ISI model

Consider the ℓ-ISI-synchronization channel Z from [MDK18], for an arbitrary fixed integer ℓ ≥ 0.
This channel replaces the i-th input bit xi by a string yi ∈ {0, 1}∗ with probability

p(yi|xi, xi−1, . . . , xi−ℓ).

For simplicity, we focus on the case where p(·|xi, xi−1, . . . , xi−ℓ) is supported on {0, 1}≤a =
⋃a

j=0{0, 1}j
for some integer a ≥ 1 and any choice of xi, xi−1, . . . , xi−ℓ, although our argument below generalizes
further. We show that our capacity theorems apply to this channel, and so they generalize the
corresponding results of [MDK18].

2Pernice, Li, and Wootters [PLW22] focused on channels with i.i.d. deletions and replications. The analog of
Theorem 6 for these channels was already shown in [Dob67].

21

Consider the special channel Z⋆ that behaves like Z, except that it does not corrupt the first ℓ
input bits and separately outputs the last ℓ input bits. We show that Z is admissible with respect
to Z⋆.

• Item 1: Since the output associated to the i-th input bit has length at most a fixed constant
a, we have H(Z⋆(Xn

1)) ≤ n · (a+ 1).

• Item 2: Fix an arbitrary input process X. Note that

Xn
1 → Z⋆(Xn

1) → Z(Xn
1).

Let W denote, for each j ∈ [ℓ], the string vj that Xj was replaced by in Z(Xn
1). Then,

Xn
1 → Z(Xn

1),W,Xn
n−ℓ+1 → Z⋆(Xn

1).

Note that there are at most 2a+1 choices for each vj . Therefore, H(W,Xn
n−ℓ+1) ≤ ℓ+ℓ ·(a+1),

and so
I(Xn

1 ;Z
⋆(Xn

1))− ℓ(a+ 2) ≤ I(Xn
1 ;Z(Xn

1)) ≤ I(Xn
1 ;Z

⋆(Xn
1)).

As a result,

lim
n→∞

|I(Xn
1 ;Z(Xn

1))− I(Xn
1 ;Z

⋆(Xn
1))|

n
≤ lim

n→∞

ℓ(a+ 2)

n
= 0.

• Item 3: Note that Z⋆(Xm
1) does not corrupt the first ℓ bits of Xm

1 , and furthermore it outputs
Xm

m−ℓ+1. Otherwise, it behaves exactly like Z. Analogously, Z⋆(Xn
m+1) does not corrupt the

first ℓ bits of Xn
m+1 and it outputs Xn

n−ℓ+1. Therefore, from Z⋆(Xm
1), Z⋆(Xn

m+1) we have the
necessary information to apply the correct errors to the first ℓ bits Xn

m+1, and we also know
the last ℓ input bits Xn

n−ℓ+1. This means that we fully determine Z⋆(Xn
1).

• Item 4:

1. Fix integers τ and n ≥ τ , and an input process X. Let N1 denote the number of output
bits corresponding to Xτ

1 in Z⋆(Xn
1). Also, let Wpre include for each j ∈ {τ+1, . . . , τ+ℓ}

the string vj that Xj was replaced by in Z⋆(Xn
1). Then, Z⋆(Xn

1), N,Wpre, X
τ
τ−ℓ+1, X

τ+ℓ
τ+1

completely determine Z⋆(Xτ
1), Z

⋆(Xn
τ+1), and

H(N,Wpre, X
τ+ℓ
τ+1, X

n
n−ℓ+1) ≤ log(τ · 2a+1) + ℓ · (a+ 1) + 2ℓ.

Therefore, the prefix-partitioning half of Item 4a holds with γm = log τ+(a+1)+ℓ(a+3).
An analogous argument establishes the suffix-partitioning property with the same γm.

2. Fix a blocklength b, number of blocks t, and an input process X. For each i ∈ [t], let Ni

denote the number of output bits corresponding to Xib
(i−1)b+1. Also, let Wi include, for

each j ∈ {(i− 1)b+ 1, (i− 1)b+ ℓ} the string vj that Xj is replaced by. Let

W = (Ni,Wi, X
ib
ib−ℓ+1)i∈[t].

Then, Z⋆(Xtb
1),W completely determines the sequence Z⋆(Xb

1), . . . , Z
⋆(Xtb

(t−1)b+1), and

H(W) ≤
t∑

i=1

(log(b · 2a+1) + ℓ · (a+ 1) + ℓ) = t · (log(b · 2a+1) + ℓ · (a+ 1) + ℓ).

Therefore, Item 4b holds with αm = log(m · 2a+1) + ℓ · (a+ 1) + ℓ = o(m).

22

• Item 5: Fix a blocklength b and a number of blocks t. Consider the random variable Y =
(Yi)i∈[t], where each Yi includes, for each j ∈ {(i− 1)b+1, . . . , (i− 1)b+ ℓ}, the string vj that
Xj should be replaced by in Z⋆(Xn

1). Then Xtb
1 → Z⋆(Xb

1), . . . , Z
⋆(Xtb

(t−1)b+1) → Y , since the

distribution of Yi is completely determined by X
(i−1)b
(i−1)b−ℓ+1 and X

(i−1)b+ℓ
(i−1)b+1, where the former is

revealed by the (i − 1)-th output block Z⋆(X
(i−1)b
(i−2)b+1) and the latter is revealed by the i-th

output block Z⋆(Xib
(i−1)b+1). Moreover, we have Z⋆(Xtb

1) = ϕ(Z⋆(Xb
1), . . . , Z

⋆(Xtb
(t−1)b+1), Y)

for the deterministic function ϕ that discards the final t bits Xib
ib−ℓ+1 from each output block

Z⋆(Xib
(i−1)b+1) with i < t, applies the corruptions dictated by Y to Z⋆(Xb

1), . . . , Z
⋆(Xtb

(t−1)b+1),
and then concatenates these blocks.

It remains to upper bound maxz log |ϕ−1(z)| appropriately. First, note that there are at most(
t(b2a+1+1)

t

)
ways of splitting z into t blocks of length at most b2a+1 each. Second, for each

block there are at most 2(a+1)·ℓ choices for the first t input bits and the corresponding strings
in {0, 1}≤a that they were replaced by at the output, and there are at most 2ℓ possibilities for
the last t input bits. Putting these observations together implies that

max
z

|ϕ−1(z)| ≤
(
t(b2a+1 + 1)

t

)
· 2(a+1)·ℓ · 2ℓ ≤ 2

t(b2a+1+1)h
(

1
b2a+1+1

)
· 2(a+1)ℓ,

where we recall that h is the binary entropy function. Therefore,

max
z

log |ϕ−1(z)| ≤ t(b2a+1 + 1)h

(
1

b2a+1 + 1

)
+ (a+ 1)ℓ,

and so Item 5 holds with γm = (m2a+1 + 1)h
(

1
m2a+1+1

)
+ (a+ 1)ℓ = o(m).

4.2 Multi-trace channels with input-correlated synchronization errors

We argue how our capacity theorems above apply to a wide class of multi-trace input-correlated
synchronization channels. Fix an integer T ≥ 1 (the number of traces), and consider the multi-trace
channel Z given by

Z(Xn
1) = (Z1(X

n
1), . . . , ZT (X

n
1)),

where the Zi’s are possibly distinct input-correlated synchronization channels, and each Zi(X
n
1) is

an independent trace of Xn
1 (i.e., the Zi(X

n
1)’s are conditionally independent given Xn

1).

Theorem 10. Suppose that each Zi is admissible with respect to Z⋆
i , and that

I(X;Z1(X), . . . , ZT (X)) = I(X;Z⋆
1 (X), . . . , Z⋆

T (X)) (15)

for all input processes X. Then, the T -trace channel Z is admissible with respect to the T -trace
channel Z⋆ given by

Z⋆(Xn
1) = (Z⋆

1 (X
n
1), . . . , Z

⋆
T (X

n
1)).

In particular, we have ICap(Z) = SCap(Z) = CCap(Z).

The assumption in Equation (15) appears stronger than simply requiring that each Zi satisfy
Item 2 with respect to Z⋆

i . Nevertheless, it still seems reasonable. Concretely, it is natural (as in
all of our applications, for example) that Z⋆

i (X
n
1) is completely determined by Zi(X

n
1) and some

additional side information Wi satisfying H(Wi) = o(n). In this case, we get that Z⋆(Xn
1) is

23

completely determined by Z(Xn
1) and the side information W = (W1, . . . ,WT), which satisfies

H(W) ≤
∑T

i=1H(Wi) = T · o(n) = o(n), since the number of traces T is constant. This means that

|I(Xn
1 ;Z(Xn

1))− I(Xn
1 ;Z

⋆(Xn
1))|

n
≤ H(W)

n
→ 0

as n → ∞.

Proof of Theorem 10. We verify that Z is admissible with respect to Z⋆. Item 2 is already guaran-
teed by Equation (15), and so we focus on showing the other properties.

• Item 1: Fix an arbitrary input process X and integer n ≥ 1. For each i we know that
H(Z⋆

i (X
n
1)) ≤ cin for some constant ci > 0. Let c⋆ = maxi∈[T] ci. Then, H(Z⋆(Xn

1)) =

H((Z⋆
i (X

n
1)i∈[T]) ≤

∑T
i=1H(Z⋆

i (X
n
1)) ≤ T · c⋆n, and so Item 1 holds with constant c = T · c⋆.

• Item 3: For an arbitrary input process X, indices 1 ≤ m ≤ n and each i ∈ [T], we have that
Xn

1 → Z⋆
i (X

m
1), Z⋆

i (X
n
m+1) → Z⋆

i (X
n
1). In particular, this means that

Xn
1 → (Z⋆

i (X
m
1))i∈[T], (Z

⋆
i (X

n
m+1)i∈[T] = Z⋆(Xm

1), Z⋆(Xn
m+1) → (Z⋆

i (X
n
1))i∈[T] = Z⋆(Xn

1).

• Item 4:

– Item 4a: Fix any integers τ ≥ 1 and n ≥ τ . For each i ∈ [T] let γ
(i)
m = o(m) and

Wpre,i and Wsuf,i be the sequence and random variables guaranteed by Item 4a applied
to Zi. Consider γm =

∑T
i=1 γ

(i)
m and Wpre = (Wpre,i)i∈[T] and Wsuf = (Wsuf,i)i∈[T]. Then,

γm = o(m) and
∑

m∈N γm/m2 converges, and H(Wpre), H(Wsuf) ≤ γn. Furthermore,
(Z⋆(Xn

1),Wpre) = ((Z⋆
i (X

n
1))i∈[T],Wpre) completely determines (Z⋆(Xτ

1), Z
⋆(Xn

τ+1)) =
(Z⋆

i (X
τ
1), Z

⋆
i (X

n
τ+1))i∈[T]. The reasoning for Wsuf is analogous.

– Item 4b: For each i ∈ [T] let α
(i)
m = o(m) and Wi be the sequence and random vari-

able, respectively, guaranteed by Item 4b applied to Zi. Consider W = (W1, . . . ,WT)

and αm =
∑T

i=1 α
(i)
m . Then, αm = o(m) and H(W) ≤

∑T
i=1H(Wi) ≤ tαb, and

(Z⋆(Xtb
1),W) = ((Z⋆

i (X
tb
1),Wi))i∈[T] completely determines

Z⋆(Xb
1), . . . , Z

⋆(Xtb
(t−1)b+1) = (Z⋆

i (X
b
1), . . . , Z

⋆
i (X

tb
(t−1)b+1))i∈[T] .

• Item 5: For each i ∈ [T], let β
(i)
m = o(m), Yi, and ϕi be the sequence, random variable,

and deterministic function guaranteed by Item 5 applied to Zi. Set βm =
∑T

i=1 β
(i)
m = o(m),

Y = (Yi)i∈[T], and

ϕ(Z⋆(Xb
1), . . . , Z

⋆(Xtb
(t−1)b+1), Y) = (ϕi(Z

⋆
i (X

b
1), . . . , Z

⋆
i (X

tb
(t−1)b+1), Yi))i∈[T].

Then,

Xtb
1 → Z⋆(Xb

1), . . . , Z
⋆(Xtb

(t−1)b+1) = (Z⋆
i (X

b
1), . . . , Z

⋆
i (X

tb
(t−1)b+1))i∈[T] → (Yi)i∈[T] = Y

and

max
z

log |ϕ−1(z)| ≤ max
z

log

(
T∏
i=1

|ϕ−1
i (zi)|

)
≤

T∑
i=1

max
zi

log |ϕ−1
i (zi)| ≤ t

T∑
i=1

β
(i)
b = tβb.

24

4.3 Capacity theorems for trimming synchronization channels

In this section, we argue that our capacity theorems are robust to additional “trimming” of channel
outputs. This property is relevant for the marker-based construction of efficient capacity-achieving
codes based on our capacity theorems.

For concreteness, let Z be an arbitrary channel with binary input and output alphabets. We
consider the “0-trimming” version of Z, denoted by Z0, which on input x first sends it through Z
to obtain output Z(x), and then trims the runs of 0s at the beginning and end of Z(x).

Lemma 14. Let Z be admissible with respect to Z⋆. Then, Z0 is also admissible with respect to Z⋆.
In particular, the capacities of Z and Z0 are all equal.

Proof. It suffices to show that I(X;Z0(X)) = I(X;Z(X)) for any input process X. Fix an arbitrary
integer n > 0. First, since Xn

1 → Z(Xn
1) → Z0(X

n
1), we have that I(Xn

1 ;Z0(X
n
1)) ≤ I(Xn

1 ;Z(Xn
1)).

On the other hand, if L0 and L1 denote the number of 0s trimmed by Z0 from the beginning and end
of Z(Xn

1), we have that Xn
1 → Z0(X

n
1), L0, L1 → Z(Xn

1), and H(L0, L1) ≤ 2 log(n+ 1). Therefore,

lim
n→∞

|I(Xn
1 ;Z0(X

n
1))− I(Xn

1 ;Z(Xn
1))|

n
≤ lim

n→∞

2 log(n+ 1)

n
= 0,

which implies the desired result.

The simple proof of Lemma 14 can be easily extended to other trimming channels that trim
different prefixes and suffixes. In particular, consider the “01-trimming” version of Z, denoted by
Z01, which on input x first sends it through Z to obtain output Z(x), and then trims the run of 0s
at the beginning of Z(x) and the run of 1s at the end of Z(x). A simple modification to the proof
of Lemma 14 yields the following.

Lemma 15. Let Z be admissible with respect to Z⋆. Then, Z01 is also admissible with respect to
Z⋆. In particular, the capacities of Z and Z01 are all equal.

4.4 Channels with runlength-dependent deletions

In this section, we apply our framework to binary channels Z with runlength-dependent deletions,
in the sense that Z deletes each bit in a run of length ℓ independently with some probability d(ℓ)
(and so we may see d as a function d : N → [0, 1]). Consider the special channel Z⋆ that on input
x behaves exactly like Z except that it does not apply deletions to the first and last runs of x, and
additionally reveals the lengths of these runs. We show that Z is admissible with respect to Z⋆.

• Item 1: Fix an arbitrary input process X and integer n ≥ 1. Since Z⋆ only applies deletions,
we have H(Z⋆(Xn

1)) ≤ n+ 2 log n ≤ 3n.

• Item 2: Fix an arbitrary input process X. Note that

Z⋆(Xn
1) → Z(Xn

1).

Let L1, B1 (resp. L2, B2) denote the number of bits deleted by Z from the first (resp. last)
input run and the bit value of this run. Let also V denote whether the first and last input
runs are distinct. Then,

Z(Xn
1), L1, B1, L2, B2, V → Z⋆(Xn

1).

25

Therefore, since H(L1, B1, L2, B2, V) ≤ 1 + 2(log(n+ 1) + 1), we have

I(Xn
1 ;Z

⋆(Xn
1))− (1 + 2(log(n+ 1) + 1)) ≤ I(Xn

1 ;Z(Xn
1)) ≤ I(Xn

1 ;Z
⋆(Xn

1)),

and so

lim
n→∞

|I(Xn
1 ;Z(Xn

1))− I(Xn
1 ;Z

⋆(Xn
1))|

n
≤ lim

n→∞

1 + 2(log(n+ 1) + 1)

n
= 0.

This implies that I(X;Z(X)) = I(X;Z⋆(X)).

• Item 3: Fix arbitrary integers 1 ≤ m ≤ n and an input process X. Note that Z⋆(Xm
1) does

not apply deletions to the first and last runs of Xm
1 and also reveals the lengths of these runs,

and likewise for Z⋆(Xn
m+1). To all other runs of Xm

1 and Xm
n+1 these channels apply the same

deletion rate as Z⋆(Xn
1), because these runs are not broken up by the partitioning of Xn

1 into
Xm

1 and Xn
m+1. Furthermore, Z⋆(Xm

1), Z⋆(Xn
m+1) reveal the lengths of the first and last runs

of Xn
1 and do not apply deletions to these runs. Therefore, it is enough to argue that knowing

Z⋆(Xm
1), Z⋆(Xn

m+1) allows us to apply the correct deletion rates to the last run of Xm
1 and

first run of Xn
m+1, which may actually be part of the same run of Xn

1 .

In the special case where the last run of Xm
1 is also its first run (i.e., when Xm

1 = bm for some
b ∈ {0, 1}) then we apply no deletions to it, nor to the first run of Xn

m+1 in case it matches
the bit value of Xm

1 . In this case, the length of the first run of Xn
1 , which is part of the output

of Z⋆(Xn
1) can be obtained from the lengths of the first runs of Xm

1 and Xn
m+1, which are

revealed by Z⋆(Xm
1), Z⋆(Xn

m+1). An analogous argument holds for the special case where the
last run of Xn

m+1 is also its first run (i.e., when Xn
m+1 = bn−m for some b ∈ {0, 1}).

In all other cases, since Z⋆(Xm
1) reveals the length of the last run of Xm

1 and Z⋆(Xn
m+1)

reveals the length of the first run of Xn
m+1, we know the length of the corresponding run(s) of

Xn
1 and so we also know the deletion rate that must be applied. Moreover, since no deletions

were applied to the last run of Xm
1 and the first run of Xn

m+1 by Z⋆(Xm
1) and Z⋆(Xn

m+1),
respectively, we can perfectly emulate the behavior of Z⋆(Xn

1) on the corresponding runs.

• Item 4:

1. Fix integers τ and n ≥ τ and an input process X. Let N denote the number of bits
deleted by Z⋆ from Xτ

1 . Furthermore, let L1, B1 (resp. L2, B2) denote the length of the
last run of Xτ

1 (resp. first run of Xn
τ+1) and the bit value of this run, respectively, and

let N1 (resp. N2) denote the number of bit deleted from the last run of Xτ
1 (resp. first

run of Xn
τ+1). Set Wpre = (N,L1, B1, N1, L2, B2, N2). Then, from Z⋆(Xn

1),Wpre we can
exactly locate the output bits corresponding to the last run of Xτ

1 and to the first run
of Xn

τ+1, and restore them to their original lengths. Therefore, Z⋆(Xn
1),Wpre completely

determine Z⋆(Xτ
1), Z

⋆(Xn
τ+1), and H(Wpre) ≤ log(τ+1)+4 log(n+1)+2, and so Item 4a

holds with γm = log(τ + 1) + 4 log(m+ 1) + 2, which satisfies the required properties.
An analogous argument establishes the suffix-partitioning property with the same γm.

2. Fix a blocklength b, number of blocks t, and an input process X. For each i ∈ [t], let
Ni denote the number of bits deleted from Xib

(i−1)b+1 by Z⋆(Xn
1), L1,i, N1,i, B1,i (resp.

L2,i, N2,i, B2,i) denote the length of the first (resp. last) run of Xib
(i−1)b+1, the number of

bits deleted from this run by Z⋆(Xn
1), and the bit value of this run, respectively, and Vi

denote whether the first and last runs of Xib
(i−1)b+1 are distinct runs. Note that

H(L1,i, N1,i, B1,i, L2,i, N2,i, B2,i, Vi) ≤ 4 log(b+ 1) + 3

26

for every i ∈ [t]. Let W = (L1,i, N1,i, B1,i, L2,i, N2,i, B2,i, Vi)i∈[t]. Then, using a similar
argument to previous items, we see that Z⋆(Xtb

1),W completely determines the sequence
Z⋆(Xb

1), . . . , Z
⋆(Xtb

(t−1)b+1), and

H(W) ≤
t∑

i=1

(4 log(b+ 1) + 3) = t · (4 log(b+ 1) + 3).

Therefore, Item 4b holds with αm = 4 log(m+ 1) + 3 = o(m).

• Item 5: Fix a blocklength b and a number of blocks t. Consider the random variable Y =
(L1,i, L2,i)i∈[t] where L1,i, L2,i denote the number of bits to be deleted from the first and last
runs of Z⋆(Xib

(i−1)b+1) so that we can transform Z⋆(Xb
1), . . . , Z

⋆(Xtb
(t−1)b+1) into Z⋆(Xtb

1). Then
Xtb

1 → Z⋆(Xb
1), . . . , Z

⋆(Xtb
(t−1)b+1) → Y , since the distribution of Y is completely determined

by the lengths of the first and last runs of each block Z⋆(Xib
(i−1)b+1). Moreover, we obtain

Z⋆(Xtb
1) = ϕ(Z⋆(Xb

1), . . . , Z
⋆(Xtb

(t−1)b+1), Y) for the deterministic function ϕ that applies the
deletions dictated by Y to the first and last runs of Z⋆(Xb

1), . . . , Z
⋆(Xtb

(t−1)b+1), concatenates
these blocks, and uses the lengths of the first and last runs of each block Xib

(i−1)b+1 revealed by
Z⋆(Xib

(i−1)b+1) to compute the lengths of the first and last runs of Xn
1 . Together, these form

Z⋆(Xtb
1).

It remains to upper bound maxz log |ϕ−1(z)| appropriately. First, note that there are at most(
t(b+1)

t

)
ways of splitting z into t blocks of length at most b each. Second, for each of the

t blocks of length at most b, there are at most (b + 1)2 possibilities for the number of bits
that were deleted from the first and last input runs of each block, (b+1)2 possibilities for the
lengths of these runs, 22 possibilities for the bit values of these runs, and 2 possibilities for
whether these two runs are distinct runs or not. Putting these observations together implies
that

max
z

|ϕ−1(z)| ≤
(
t(b+ 1)

t

)
· (b+ 1)4t · 23t ≤ 2t(b+1)h(1

b+1) · (b+ 1)2t · 23t,

where we have used the standard inequality
(
n
k

)
≤ 2nh(k/n), with h(p) = −p log p − (1 −

p) log(1− p) the binary entropy function. Therefore,

max
z

log |ϕ−1(z)| ≤ t(b+ 1)h

(
1

b+ 1

)
+ 4t log(b+ 1) + 3t

= t ·
(
(b+ 1)h

(
1

b+ 1

)
+ 4 log(b+ 1) + 3

)
,

and so Item 5 holds with βm = (m+ 1)h
(

1
m+1

)
+ 4 log(m+ 1) + 3 = o(m).

We would like to apply Theorem 5 to the 0-trimming multi-trace version of any runlength-
dependent deletion channel. Fix an arbitrary process X = (Xi)i∈N. For an arbitrary n ∈ N,
set

W = (L1, L2, D1, D2, B1, B2)

with (L1, D1, B1) (resp. (L2, D2, B2)) denoting, respectively, the length of the first (resp. last) run
of Xn

1 , the number of bits deleted from that run by Z(Xn
1), and the bit value of that run. Then,

we have
Xn

1 → Z(Xn
1),W → Z⋆(Xn

1).

27

Furthermore, H(W) ≤ 4 log(n+1)+2 = o(n). This means that Equation (15), and thus Theorem 10,
applies to Z1 = · · · = ZT = Z for any number of traces T . Combined with Lemma 15, we get that
Theorem 5 applies to the trimming T -trace version of any runlength-dependent deletion channel.
Formally, we get the following corollary.

Corollary 2. Let Z be a 01-trimming T -trace runlength-dependent deletion channel. Then, for
any ε, ζ > 0 there exist γ = γ(ε, ζ) ∈ (0, 1/2) and integers b = b(ε, ζ) and t(ε, ζ) that depend
only on ε and ζ such that for any t ≥ t(ε, ζ) there exists a code C with blocklength n = tb, rate
R ≥ ICap(Z) − ε, decoding error probability at most ε such that for all codewords c ∈ C we have
γζn ≤ w(ci+ζn

i) ≤ (1− γ)ζn for all i ∈ [(1− ζ)n].

Remark 3. Clearly, Corollary 2 also holds for the 10, 11, 00-trimming T -trace runlength-dependent
deletion channel.

5 Warmup: efficient capacity-achieving codes for channels with
runlength-dependent deletions

In Corollary 2, for the case of T = 1, we showed that there is a code that achieves capacity on the
00-trimming runlength-dependent channel. 3 Furthermore, we showed that this code has a large
density of 1s in every “not too short” interval.

In this section, we will closely follow the arguments of Pernice, Li, and Wootters [PLW22]
who showed how one can transform any code for the binary deletion channel (and, in fact, more
i.i.d. synchronization channels) into an explicit and efficient code with a negligible loss in the
rate. With some needed modifications, we will show how to transform (non-explicit and non-
efficient) capacity-achieving codes for a smaller class of runlength-dependent channels into explicit
and efficient capacity achieving codes.

We start by defining the class of runlength-dependent channels for which we aim to construct
efficient codes.

Definition 11. Let M ∈ N and µ ∈ (0, 1). A runlength-dependent deletion channel with deletion
probability function d : N → [0, 1] is called BDC-RL-Bounded(d, µ,M) if d is non-decreasing and
for all ℓ ≥ M , we have d(ℓ) = d(M) < 1− µ.4

The theorem we will prove in this section is as follows.

Theorem 11. Let ε > 0. There exists an explicit family of binary codes {Ci}∞i=1 for the channel
BDC-RL-Bounded(d, µ,M) where the block length of Ci goes to infinity as i → ∞ and5

1. Ci is encodable in linear time and decodable in quasi-linear time.

2. The decoding failure probability is exp(−Ω(ni)) where ni is the block length of Ci.

3. The rate of the Ci is R > Cap(BDC-RL-Bounded(d, µ,M))− ε.
3Recall that this means that the after the deletions that are performed by the channel, the channel also trims the

first and last run of zeros.
4The monotonicity assumption is for simplicity and also since it makes sense to assume that longer runs are more

likely to suffer from higher deletion rate.
5The channel parameters are fixed and do not depend on the block lengths of the codes.

28

Before formally presenting our construction, we briefly recall, in an informal way, the construc-
tion of [PLW22]. As in [GL19, CS22], the construction of [PLW22] is based on code concatenation
where the outer code, Cout, is taken to be the code of [HS21b]. The inner code of [PLW22], denoted
as Cin, is taken to be a capacity-achieving code over the trimming binary deletion channel that is
“dense”. More precisely, our Corollary 2 for the single trace setting can be seen as an extension
of their [PLW22, Proposition 3.4] (stated here as Lemma 13). Thus, a concatenated codeword in
Cout ◦ Cin is of the form Cin(σ1) ◦ · · · ◦ Cin(σn) where (σ1, . . . , σn) is an outer codeword.

Then, in the concatenated codeword, every two adjacent inner codewords are separated using
a large run of zeros (termed as buffers). Adding these buffers was done also in [GL19, CS22] and
the goal is to reduce the loss of synchronization between the receiver and the sender. The final
codeword that is transmitted through the channel is

Cin(σ1) ◦ 0B ◦ · · · ◦ 0B ◦ Cin(σn)

where B is the length of the buffer.
Now, the decoder which receives a corrupted version of the transmitted codeword consists of

three steps. First, identifying the buffers following the simple rule: every run of zeros of length
greater than some parameter is identified as a buffer. With standard concentration bounds (and
appropriate parameters), one can show that almost all buffers are correctly identified as buffers.
Moreover, with high probability there are very few “spurious” buffers inside the inner codewords
(that is, the channel created a long run of zeros inside an inner codeword and the decoder mistakenly
identified it as a buffer). Here we use the fact that in every “not too short” interval in an inner
codeword there are many 1s. After this step, every string between two buffers is decoded using
decoder of the inner code. Note here that the buffer identification step might trim the codeword
from the left and right. However, the inner code achieves capacity on the trimming version of the
channel and thus most of the corrupted inner codeword are decoded successfully.

Finally, we run the decoder of the outer codeword which can correct from a small amount
of insertions and deletions (insdel errors). Observe that each deleted buffer and spurious buffer
contributes at most 3 insdel errors in the outer codeword symbols, and that a failure in the inner
code’s decoding algorithm results in 2 insdel errors. Thus, as long as with high probability the
number of all of these errors can be made as small as we want, then the outer code of rate 1− ε− δ
that can correct from δ insdel errors can handle those errors. Concluding, we have that with high
probability decoding is successful and the rate is close as we want to the rate of the inner code
which achieves capacity.

5.1 Construction

Let ε be the desired gap to capacity.

Outer and inner codes. The coding scheme uses code concatenation. For the outer code, as
in previous works that construct binary codes for synchronization channels, we shall use a code
that can correct from adversarial (worst-case) indel (insertions and deletions) errors. We start by
defining the relevant metric.

Definition 12. The edit distance between two strings s, s′, denoted by ED(s, s′), is the minimal
number of insertions and deletions needed to convert s into s′.

we use the code by Haeupler, Rubinstein, and Shahrasbi [HRS19] that can correct adversarial
insdel errors.

29

Theorem 12 ([HRS19]). For every ϵout, δout ∈ (0, 1) there exists a family of codes {Cn}n∈N, where
Cn has blocklength n, of rate Rout = 1−δout− ϵout over an alphabet Σ of size |Σ| = Oϵout(1) that can
correct δoutn adversarial insdel errors. The codes Cn support linear time encoding and quasi-linear
time decoding.

In other words, this code has the property that the edit distance between any two distinct
codewords is at least 2δoutn. We will denote by Cout the outer code given by Theorem 12 where
we set δout = ε/5. By Cin, we denote the inner code that achieves capacity on the 0-trimming
BDC-RL-Bounded(d, µ,M) channel, given by Corollary 2 by setting ε (in the corollary) to ε/50
and ζ (in the corollary) to be ν/3 where ν = ε · µ/5. We also make sure that each codeword in Cin
starts and ends with a 1 simply by adding a 1 bit at the beginning and at the end. Clearly, this
does not affect the asymptotics. Formally, our encoding process is as follows:

Encoding. Given as input a message x ∈ ΣRoutn, we encode it with the code given in Theorem 12
to obtain an outer codeword c(out) = (σ1, . . . , σn) ∈ Cout ⊂ Σn. Then, every symbol in c(out),
σi ∈ Σ = {0, 1}m·Rin , is encoded using the inner code to a codeword that we denote c

(in)
σi . We thus

get a codeword in the concatenated code(
c(in)σ1

, . . . , c(in)σn

)
∈ Cout ◦ Cin .

Now that we have a codeword in the concatenated code, we add an additional layer of encoding
that is crucial for preserving synchronization. Every two adjacent inner codewords are separated
by a buffer of zeros of length ⌈ν ·m/(1− d(M))⌉ where recall that ν is a small constant such that
ν = µ · ε/5 (recall that, by Definition 11, µ is such that d(M) ≤ 1− µ and that d(M) is the largest
deletion probability the channel can impose).

Remark 4. We note that in order for the concatenation to make sense, we must have Rinm =
⌈log2 |Σ|⌉ = ⌈log2(Oϵout(1))⌉. We shall choose a small enough ϵout so that the length of the buffer
will be ≥ M , which would imply that the channel will apply deletions to it with probability d(M).

Rate. The codeword length is mn+ (n− 1)⌈νm/(1− d(M)⌉ and, therefore, the rate of the code
is

R =
log2 |Σ|Routn

mn+ (n− 1)⌈νm/(1− d(M)⌉

≥ RinRout

1 + ν/(1− d(M)) + 1/m

≥ (1− ε/5− ϵout)Rin

1 + ε/5 + 1/m

≥ (1− ε/4)Rin

1 + ε/4

≥ (1− ε/2)Rin

where the second inequality follows since 1 − d(M) > µ. The third inequality follows by our
assumption that δout = ε/5 and taking ϵout to be small enough (so that ε/5 + ϵout ≤ ε/4 and
1/m is at most ε/5). Now, since Rin = Cap(BDC-RL-Bounded(d, µ,M)) − ε/50, we get that
R ≥ Cap(BDC-RL-Bounded(d, µ,M))− ε.

30

Decoding. The decoding consists of the following step:

1. Decoding buffers: Identify all runs of the symbol 0 in the received string that are of length at
least νm

2 and declare that these runs are buffers.

Denote by c̃1, . . . , c̃s the strings in between the buffers (and discard the buffers). Note that
each c̃i starts and ends with a 1.

2. Inner decoding: Decode each c̃i (brute force) into an outer code symbol σ̃i.

3. Outer decoding: Run the outer code decoding algorithm on σ̃(out) = (σ̃1, . . . , σ̃s) to obtain x̃
and return it.

5.2 Analysis

We start by upper bounding the probability of identifying a sent buffer.

Claim 1. The probability that a specific buffer is not identified is at most exp(−Ωε,µ(m)).

Proof. This happens when the channel deletes too many bits from a buffer so that less than νm/2
bits of the transmitted buffer survived the channel, and we did not identify this buffer when we
identify buffers in Step 1.

Let Z be the random variable that corresponds to the number of bits from that buffer that sur-
vived the transmission through the BDC-RL-Bounded(d, µ,M). Clearly, Z ∼ Bin(⌈νm/(1− d(M))⌉, 1−
d(M)) and then, By Chernoff’s bound

Pr
[
Z <

νm

2

]
≤ Pr

[
Z <

(
1− 1

2

)
νm

]
< exp

(
−1

8
νm

)
.

Now, we bound the probability that a spurious buffer is created by the channel.

Claim 2. Let Cin(σi) be an inner codeword that is transmitted through BDC-RL-Bounded(d, µ,M)
and let y denote its output. The probability that y contains a run of zeros of length at least νm/2 is
at most exp(−Ω(m)).

Proof. Clearly, in order for the channel to create a run of zeros of length νm/2, it must be that the
channel deleted all 1s from an interval of length at least νm/2. Fix an interval of length νm/3 in an
inner codeword. By Corollary 2 and recalling that ζ = ν/3, this interval contains at least γνm/3
ones for some γ = γ(ε/2, ζ). Let ai, i ∈ [M − 1] be the number of ones in this interval that belong
to runs of length i and denote by aM the number of bits that belong to runs of length ≥ M in this
interval. Deleting all these 1s happens with probability

d(1)a1d(2)a2 · · · d(M)aM ≤

3 ·
(∑M

i=1 aid(i)
)

γνm

γνm/3

≤ (1− µ)γνm/3 = exp(−Ωε,µ,γ(m)) ,

where the first inequality follows from the weighted AM-GM inequality and the second inequality is
due to the assumption that d(1) ≤ d(2) ≤ · · · ≤ d(M) ≤ 1− µ and that

∑M
i=1 ai = γνm/3. Union

bounding over all such intervals, we get also that the probability of the existence of a spurious buffer
inside an inner codeword is at most m · exp(−Ωε,µ,γ(m)) = exp(−Ωε,µ,γ(m)).

31

Remark 5. Note that the above argument bounds the probability that a spurious buffer is identified
inside an inner codeword. However, it can be that the decoder identifies several spurious buffer.
The maximal number of spurious buffers the decoder can identify inside an inner codeword is at
most 2/ν = O(1).

Claim 3. Let 0B ◦Cin(σi)◦0B be an inner codeword surrounded by two buffers and assume that it is
transmitted through the channel BDC-RL-Bounded(d, µ,M). Assume that the buffers were identified
by the algorithm and that no spurious buffers were created. Denote by c̃j the corresponding string
obtained after removing the buffers. Then, the probability that c̃j is decoded correctly to σi is at least
1− ε/2.

Proof. Observe that c̃j is the output of the 00-trimming BDC-RL-Bounded(d, µ,M) on the string
Cin(σi). Thus, by Corollary 2, the decoding failure probability is ε/2.

With these claims, we can now prove Theorem 11, exactly as in [PLW22] (the proof is given
here for completeness).

Proof of Theorem 11. Our goal is to show that with probability 1 − exp(−Ω(n)), it holds that
ED(σ(out), σ̃(out)) < δoutn. This would imply that Step 3 in our decoding algorithm succeeded and
the correct message is returned. There are three types of error that can increase the edit distance
between σ(out) and σ̃(out): A deleted buffer, a spurious buffer, and wrong inner decoding.

We analyze the contribution of each of the error types (deleted buffer, spurious buffer and wrong
inner decoding) on ED(σ(out), σ̃(out)). A deleted buffer causes two inner codewords to merge, and
thus be decoded incorrectly by the inner code’s decoding algorithm. This introduces two deletions
and one insertion in the outer code level. Similarly, one can verify that a single spurious buffer
inside an inner codeword introduces one deletion and two insertions. Furthermore, b spurious
buffers inside an inner codeword introduce at most b + 1 insertions and one deletion. Finally, a
wrong inner decoding causes a substitution which is equivalent to one deletion followed by one
insertion.

As mentioned above, the outer decoding algorithm fails if ED(σ(out), σ̃(out)). For this to happen,
at least one of the following must occur:

1. δoutn/9 deleted buffers.

2. δoutn/9 spurious buffers.

3. δoutn/9 wrong inner decodings.

Observe that for large enough m (equivalently, for small enough ϵout), we get that the probability
for a deleted buffer exp(−Ωε,µ(m)) < δout/10 and thus, by Chernoff bound, the probability that
there are at least δoutn/9 deleted buffers is at most exp(−Ω(n)). Furthermore, since the expected
number of spurious buffers between two adjacent real buffers is exp(−Ωε,µ,γ(m)) < δout/10 for
large enough m and the maximal number of such spurious buffers is 2/ν, we can apply Hoeffding’s
bound (Lemma 3), and get that the total number of all spurious buffers is < δoutn/9 with probability
1−exp(−Ω(n)). Finally, since a decoding of an inner codeword fails with probability ε/50 = δout/10
(assuming the buffers surrounding it were detected and there were no spurious buffers inside), we get
that the probability that more than δoutn/9 of these inner decodings failed is at most exp(−Ω(n)).
The claim about the decoding failure probability follows by applying a simple union bound.

We now justify the time complexity of our encoding and decoding algorithms. The complexity
of the encoder is as follows. The encoder of the outer code runs in linear time. Then, the encoding
of each outer code symbol using the inner code is performed in constant time, and thus the encoding

32

of all the n symbols is done in O(n). Finally, adding the buffers also takes linear time. The decoding
complexity is dominated by the outer code’s decoding time which is quasi-linear. Indeed, identifying
the buffers and decoding all corrupted inner codewords takes O(n).

Remark 6. We emphasize the order in which we choose the parameters of the scheme and, in
particular, we make sure that there is no circular dependency. First, observe that µ and M are
given by the channel BDC-RL-Bounded(d, µ,M).

We first choose the constant ε which is the gap to capacity we want to achieve. This sets δout, ν,
ζ and γ. Then, we choose small enough ϵout to ensures that all the failure probabilities computed
in the proofs of Claim 1 and Claim 2 are indeed smaller than δout/10 (recall that deleted buffer and
spurious buffer happen with probability exp(−Ω(m)) = exp(−Ω(log2(|Σ|/Rin))) = (Oϵout(1))

−Ω(1)).

Remark 7. We remark that the proof technique applied in this section (which is based on [PLW22])
can be applied to any runlength-dependent channel for which we can design buffers to separate inner
codewords and prove that with high probability we can identify “most” of these buffers correctly
and that with high probability the number of spurious buffers is “small”. More specifically, all one
needs to do is prove analogous claims to Claim 1 and Claim 2.

In this section, we followed a relatively easy example, the BDC-RL-Bounded(d, µ,M) channel.
Indeed, the buffers we used are simply long runs of zeros, and for the proofs of Claim 1 and Claim 2,
we used the nature of channel (the deletions inside a run are i.i.d.) and the fact (given in Corollary 2)
that our inner codewords contain many 1s in every not-too-short interval (and thus, spurious buffers
are not likely to be created).

6 Efficient capacity-achieving codes for multi-trace channels with
runlength-dependent deletions

In the previous section, we constructed efficient capacity-achieving codes for runlength-dependent
deletion channel. In this section, our objective is to construct efficient capacity-achieving codes
for the multi-trace version of the channel. Thus, one can see the result of the previous section as
special case of the result we will obtain in this section. More specifically, our goal is to transform the
structured capacity-achieving codes from Corollary 2 for a multi-trace runlength-dependent deletion
channel into explicit and efficient capacity-achieving codes for the same channel.

This time, our techniques will follow the main ideas of Brakensiak, Li, and Spang [BLS20] who
constructed explicit and efficient codes of rate 1−ε that can be reconstructed from exp(Od(log

1/3(ε−1)))
traces of the binary deletion channel with parameter d (BDCd, for short).

We start by defining the class of multi-trace, runlength-dependent channels for which we aim to
construct efficient codes.

Definition 13. Let BDC-MT-RL-Bounded(d, T, µ,M) be a runlength-dependent channel that pro-
duces T traces on each input. As in Definition 11, the deletion function is defined by a non-decreasing
function d(ℓ) : N → [0, 1], number µ ∈ (0, 1), and an integer M such that d(ℓ) = d(M) < 1− µ for
all ℓ ≥ M .

The theorem we will prove in this section is as follows.

Theorem 13. Let BDC-MT-RL-Bounded(d, T, µ,M) be a runlength-dependent channel that com-
plies with Definition 11 where µ and M are constants. For every ε > 0, there exists a family of
binary codes {Ci}∞i=1 for the BDC-MT-RL-Bounded(d, T, µ,M) where the block length of Ci goes to
infinity as i → ∞ and

33

1. Ci is encodable in quasi linear time and decodable in quadratic time.

2. The decoding failure probability is exp(−Ω(n)).

3. The rate of the Ci is R > Cap(BDC-MT-RL-Bounded(d, T, µ,M))− ε.

Remark 8. Note that this section’s main result recovers the result of the previous section with worse
time complexity. This is because in the decoding procedure, we simply use the matching algorithm
given by [HS21b] instead of the improved, more involved indexing scheme given in [HRS19]. It can
be the case that these techniques also work in this case. However, for simplicity, we are using the
simple matching algorithm of [HS21b] in a black-box way (see Lemma 17).

Before diving into the technical details, we present a broader picture, including a description of
the main ideas of [BLS20].

Let x be a random string in {0, 1}n. The average trace reconstruction problem (which has been
extensively studied in the literature [BKKM04, HPP18, Cha21, HPPZ20, CDL+22], just to name a
few) asks for the minimal number of traces T for which the reconstruction of x succeeds with high
probability (the randomness is over the randomness of the channel and the choice of x). Although
there has been significant interest in this question, there is still an exponential gap between the
lower bound (Ω̃(log5/2 n) [Cha21]) and upper bound on T (exp(Õ(log1/5 n)) [Rub23]).

Motivated by the challenges in developing DNA-based storage systems, [CGMR20] and then a
subsequent work [BLS20] introduced the coded trace reconstruction problem, a natural extension
of the trace reconstruction problem. In this setting, the goal is to design a code with rate close
to 1 as possible such that any codeword can be reconstructed from (very) few traces, with high
probability. In both works, the authors provide constructions of efficient codes with rate 1− ε that
are trace-reconstructable Oε(1) (see Remarks 1.6 and 1.7 in [BLS20], which compare the results of
both papers).

The main theorem of [BLS20] (Theorem 1.4) turns an upper bound on T in the average case into
an explicit and efficient code with rate 1− ε that is efficiently trace-reconstructable. Applying their
result with the current best upper bound, they that the number of traces is exp(Od(log

1/3(ε−1))).
The major problem in generalizing the concatenated scheme from the previous section to the

multi-trace setting is that we need to synchronize the traces. Indeed, assume that we have an
inefficient code that achieves capacity in the multi-trace setting and that we use the same encoding
process as in the previous section and denote by a1, . . . , an the encoded inner codewords. Let
z1, . . . , zT be the received traces. We can easily show that in most traces, most of the buffers are
detected and that there are not too many spurious buffers. Thus, from each trace t ∈ [T] we
extract nt binary strings b(t)1 , . . . , b

(t)
nt where each one of these strings is a trace of an inner codeword.

However, to perform trace reconstruction to recover, say ai, we need to know in each trace t, which
j ∈ [nt] is such that b

(t)
j is the corresponding trace of ai in the t-th trace.

To overcome this problem, [BLS20] used two inner codes in their encoding process. We shall do
the same thing here. The first code encodes the information symbols and is robust in the multi-trace
setting. The second inner code encodes synchronization symbols (these are symbols that do not
carry data information but are used to preserve synchronization in the presence of insertions and
deletions) and can be reliably recovered from only a single trace of the channel. More precisely, the
encoding process takes a pair of information symbol and synchronization symbol (ri, si) and output
(ai, bi) where ai and bi are binary codewords in two different inner codes, as described above. Then,
we shall place the buffers in a slightly different way than what we did in the previous section (also
slightly different than what [BLS20] did), but the main idea is similar.

34

Note that now, before performing the “inner” trace reconstruction step, we add another step (as
in [BLS20]) that aligns each trace using the synchronization symbols (in each trace most of them
are decoded correctly). Then, in each trace, we know the right location of most of the corrupted
inner codewords, and we can run the inner trace reconstruction.

6.1 Auxiliary results

In this subsection, we define and cite several ingredients that we will use in our construction.

Synchronization strings. Synchronization strings are special indexing strings that were first
introduced in [HS21b].

Definition 14. A string S ∈ Σn is an η-synchronization string if for every 1 ≤ i < j < k ≤ n, it
holds that ED(S[i, j), S[j, k)) > (1− η)(k − i).

The following theorem shows that one can efficiently construct such strings over a ‘not too large’
alphabet.

Theorem 14 (Theorem 1.2, [CHL+19]). For every natural number n and every η ∈ (0, 1), there
exists a polynomial-time algorithm that constructs a τ -synchronization sequence over an alphabet of
size O(η−2).

Synchronization strings were the main ingredient in [HS21b] for constructing codes that can
correct insdel errors. The main idea behind [HS21b] is to take a code C that can correct substitutions
and erasures and combine it with a single η-synchronization string S = s1 · · · sn of length n. The
resulting code is

CID := {((c1, s1), . . . , (cn, sn)) | c ∈ C} .

Note that the synchronization string is the same for all codewords and therefore does not carry
information. Therefore, to ensure that the synchronization string has a negligible impact on the rate,
the alphabet size of the code C must be large compared to the alphabet size of the synchronization
string.

The purpose of the synchronization symbols is to transform the insdel errors into erasures and
substitutions. This is achieved by a “matching” algorithm given by the following lemma.

Lemma 16 ([HS21a, Lemma 2.2]). Let S = s1s2 · · · sn be an η synchronization string. There exists
an algorithm that on input (m′

1, s
′
1), . . . , (m

′
n′ , s′n′), and S = s1 · · · sn, guesses the position of all

received symbols in the sent string such that the position of all but O(
√
η ·n) of the symbols that are

not deleted are guessed correctly. This algorithm runs in time Oη(n
2).

The algorithm which yields this lemma [HS21a, Algorithm 1] essentially transforms the δn
insdel errors applied to a codeword ((c1, s1), . . . , (cn, sn)) into erasures and substitution that are
applied to (c1, . . . , cn). Specifically, the algorithm outputs (y1, . . . , yn) ∈ (ΣC ∪ {⊥})n such that
(y1, . . . , yn) can be obtained from (c1, . . . , cn) by performing e erasures and t substitutions where
e+ 2t ≤ δn+ 12

√
ηn.

We will rephrase Lemma 16 so that it fits our decoding algorithm. We start with a definition of
a true indexing matching.

Definition 15. Let S = s1 · · · sn be string and let Let S′ = s′1 · · · s′m be a string that is obtained
from S by performing δn insdel errors. A true indexing matching between S and S′ consists of a
set I ⊆ [n] and a map Γ : I → [m] such that for all a ∈ I:

35

• the symbol in the a-th position in S (sa) was not deleted.

• The new position of sa in S′ is Γ(a).

Lemma 17 ([HS21a, Section 2, implicit]). Let S = s1s2 · · · sn be an η synchronization string and
let S′ = s′1 · · · s′m be a string that is obtained from S by performing δn insdel errors. Then, there
exists a matching algorithm that produces indices i1 < . . . < it and j1 < . . . < jt such that

• t ≥ n− δn− 2
√
ηn.

• siℓ = s′jℓ for all ℓ ∈ [t].

• There are at most √ηn indices ℓ ∈ [t] such that Γ(iℓ) ̸= jℓ.

Good codes correcting substitutions. For our scheme we will need to use an outer code over
a large (but constant) alphabet that can correct substitutions. In [BLS20], the authors adapted
the efficient binary codes given in [GI05] into efficient codes over any alphabet that is a power of
2. They used these codes to construct codes over large (but constant) alphabets that are trace
reconstructible.

Proposition 1 ([BLS20, Proposition 2.17]). For every ε and Σ whose size is a power of 2, there
exists an infinite family of codes over Σ of rate 1−ε encodable in linear time and decodable in linear
time from up to a fraction 1

40ε
3 of worst-case substitution errors.

Remark 9. We note that in [BLS20], for their binary codes, the authors used a construction of
Justesen [Jus72] that gives rate 1 − ε codes correcting Θ(ε2/ log(ε−1)) for all large enough block
length (see [BLS20, Proposition 2.17]). The caveat is that the run time of the encoder and decoder
is quadratic. In this paper, we focus on constructing an infinite family of capacity achieving codes,
and thus we choose to use Proposition 1.

6.2 Construction

Parameters We start by introducing the components of our construction which include an outer
code that can correct from substitutions and two inner codes that we obtain from Corollary 2. We
shall introduce parameters throughout the description of the construction. To aid readability, these
are also listed in Table 1. We note here that there was no attempt to optimize the parameters. Let
ε be the desired gap to capacity.

Outer code. Let Cout be a code of length nout and rate 1 − ε/4 over the alphabet ΣR that can
correct δout = ε3/40 fraction of worst-case substitution errors. This code exists by Proposition 1.

Inner codes. As in [BLS20], we shall encode the data and the synchronization symbols separately
using two inner codes. Set ζ = (1− d(M))ν/4 and εR = εS = ε4/T .

1. Code for the synchronization symbols. Let η = ε8/T and let S = s1 · · · snout be an
η-synchronization string of length nout over the alphabet ΣS where, by Theorem 14, we have
that |ΣS | = O(ε16/T 2). However, we clearly can use a larger alphabet. We shall assume
that log |ΣS | = (RS)

−1 · log nR where R(CS) is a constant in (0, 1) and nR is a large enough
constant to be determined at the end. Let CS be a code for the BDC-RL-Bounded(d, µ,M)
(this is the single trace version, i.e., for T = 1) channel guaranteed by Corollary 2 where
R(CS) denotes its rate (R(CS) can be as close to capacity as we want). CS is equipped with

36

Parameter Value Description/Comments
ε Gap to capacity
T Constant Number of traces

nout → ∞ Length of Cout
δout ε3/40 Substitution correction capability of Cout
nR Large enough constant Length of the inner code CR

nS log nR Length of the inner code CS

R Constant Rate of the inner code CR

µ Constant Channel parameter
M Constant Channel parameter
ν ε · µ small constant for buffer size
B ν

16(1−d(M)) · nR Buffer size
ξ ε4/T Number of bad pairs (see Definition 16 below)

εR, εS ε4/T Decoding error probability of CR, CS , respectively
ζ (1− d(M))ν/4 For Corollary 2
γ γ(εR, ζ) Given by Corollary 2
η ε8/T Synchronization parameter

Table 1: Parameters of the scheme. All parameters are constant with respect nout.

an encoder EncS : ΣS → {0, 1}nS and a decoder DecS : {0, 1}∗ → ΣS such that for every
codeword c ∈ CS the probability that DecS fails to decode c after transmission through the
BDC-RL-Bounded(d, µ,M) is at most εS . We also assume that CS starts with a 1 bit and
ends with a 0 bit.

By Corollary 2, the length of CS which is denoted by nS is at least n(εS , ζ) for some function
n.

2. Code for the content symbols. For the content symbols, i.e., the symbols of the outer code
Cout, we will use again the code guaranteed by Corollary 2, but now for T traces. Namely, we
get a code CR of length nR, with rate R(CR) = Cap(BDC-MT-RL-Bounded(d, T, µ,M)) −
εR that is (T, εR)-trace reconstructable for the BDC-RL-Bounded(d, µ,M) channel. CR is
equipped with an (inefficient) encoder EncR : ΣR → {0, 1}nR where log |ΣR| = R−1 ·nR and an
(inefficient) decoder DecS : {0, 1}∗ → ΣR such that for every codeword c ∈ CS , the probability
that DecS fails to decode c after transmission through the BDC-MT-RL-Bounded(d, T, µ,M)
is at most εR. We assume that CR starts with a 0 bit and ends with a 1 bit.

Note again that by Corollary 2, nR is at least n(εR, ζ) for some function n.

Since nR and nS can be as large as we want, starting from some n(εS , ζ), we make sure that
nR = 2nS . Let γ is the constant obtained by Corollary 2 when given the parameters εS and ζ as
declared here.

Encoding. Let ν = ε · µ and set B = ν
16(1−d(M)) · nR. By choosing a large enough nR, we make

sure that B > M where recall that M is a channel parameter (for every run of length at least M ,
the deletion probability applied on each bit of this run is d(M)).

The encoding process is given next.

1. Let m ∈ Σkout
R be a message. Encode it using the outer code Cout to obtain (r1, . . . , rn) ∈ Σnout

R .

37

2. Encode each ri and si using the respective inner codes. Namely, let ai = EncR(ri) and
bi = EncS(si).

3. Add buffers of the symbol 0 of length B between every ai and bi and add buffers of the symbol
1 length B between bi and ai. The codeword has the following form

c = a1 ◦ 0B ◦ b1 ◦ 1B ◦ a2 ◦ 1B ◦ b2 ◦ · · · ◦ an ◦ 0B ◦ bn ◦ 1B .

Rate. The length of the codeword is (nR + 2B + nS) · nout. Thus, the rate is

R =
log |ΣR|(1−ε/4)nout

(nR + 2B + nS) · nout
(16)

=
(1− ε/4) · R(CR) · nR

nR + 2B + nS

=
(1− ε/4) · R(CR)

1 + 2ν
16(1−d(M)) +

lognR
nR

≥ (1− ε/4) · R(CR)

1 + ε/4

≥ (1− ε/2) · R(CR) (17)
≥ Cap(BDC-MT-RL-Bounded(d, T, µ,M))− ε , (18)

where the first inequality holds since, for large enough nR, we have (log nR)/nR ≤ ε/8 and also
since 1−d(M) ≤ µ (by the channel’s definition), ν/(4(1−d(M))) ≤ ε/4. The last inequality follows
since R(CR) = Cap(BDC-MT-RL-Bounded(d, T, µ,M))− εR where εR = ε4/T < ε/2.

Decoding. Let z(t) be the received string at the t-th trace.

1. Trace alignment using the synchronization symbols.

(a) Identify 1-buffers. Every run of zeros of length greater than (1− d(M))B/2 is identified
as a 1-buffer.
Let z

(t)
1 , . . . , z

(t)
nt be the strings in between the buffers.

(b) Identify 0-buffers. For every i ∈ [nt], in z
(t)
i , every run of zeros of length greater than

(1 − d(M))B/2 is identified as a 0-buffer. If there are no 0-buffers in z
(t)
i or there are

more than a single 0-buffer, discard this z
(t)
i . Otherwise, divide this z

(t)
i into two parts

according to the 0-buffer that was found.
Let (x

(t)
1 , y

(t)
1), . . . , (x

(t)
n′
t
, y

(t)
n′
t
) be the pairs that correspond to the s

(t)
i containing a single

0-buffer.
(c) For every i ∈ [n′

t], decode the synchronization symbol from y
(t)
i . Namely, s̃(t)i = DecS(y

(t)
i).

(d) Run the algorithm from Lemma 17 on s̃
(t)
1 , . . . , s̃

(t)
n′
t

to obtain indices ĩ
(t)
1 , . . . , ĩ

(t)
n′′
t

and

j̃
(t)
1 , . . . , j̃

(t)
n′′
t
.

(e) For every p ∈ [n′′
t], let ã

(t)

ĩ
(t)
p

:= x
(t)

j̃
(t)
p

and for p /∈ {̃i(t)1 , . . . , ĩ
(t)
n′′
t
}, set ã

(t)
p =⊥.

2. Trace reconstruction. For all i ∈ [n], let r̃i = Dec(ã
(1)
i , . . . , ã

(T)
i).

3. Outer code correction. Run Decout(r̃1, . . . , r̃n) and return the output.

38

6.3 Analysis

The following claims (Claims 4-7) bound the probabilities of bad events that are related to the
correct identification of the buffers. The first claim bounds the probability that a 1-buffer is not
detected in Step (1a).

Claim 4. The probability that a 1-buffer is not identified is at most exp(−Ωε,µ(nR)).

Proof. The length of a buffer is B = ν
16(1−d(M)) ·nR. In order for the decoding algorithm to consider

it as a run in an inner codeword, the channel must delete at least (1 − d(M))B/2 bits from it.
Since every bit in the buffer is deleted independently with probability d(M) (recall that B > M),
the expected length of a buffer after going through the channel is (1 − d(M))B. By applying the
Chernoff bound, we get that the probability that less than (1 − d(M))B/2 bits of buffer survived
the transmission is at most

exp(−(1− d(M))B/8) ≤ exp(−νnR/128) ≤ exp(−Ωε,µ(nR)) .

We are now interested in bounding the probability that a 0-buffer is not identified.

Claim 5. Let z
(t)
i be a string obtained after Step (1a). Assume that z

(t)
i does not contain 1s that

belong to a 1-buffer that was not identified by the algorithm and that the buffers that were identified
before and after z

(t)
i are indeed two adjacent 1-buffers. Then, the probability that the 0-buffer inside

z
(t)
i not identified is at most exp(−Ωε,µ(nR)).

Proof. The proof is identical to the proof of Claim 4.

Our next goal is to bound the probability of detecting “spurious” 0-buffers inside a z
(t)
i . That

is, we upper bound the probability that the channel deletes many consecutive 1s in such a way
that a long run of 0s is created where all of its bits belong to an inner codeword and the algorithm
mistakenly thinks that it is a 0-buffer.

Claim 6. Let z
(t)
i be a string obtained after Step (1a). Assume that z

(t)
i does not contain 1s that

belong to a 1-buffer that was not identified by the algorithm and the buffers that were identified before
and after z

(t)
i are indeed two adjacent buffers. Then, the probability that the algorithm identifies a

0-buffer such that all of the bits of that buffer are bits of an inner codeword is at most Ωε,µ,γ(nR)).
6

Proof. The computation is similar to the one done in the previous section, yet a bit more delicate.
Since the 1-buffers surrounding z

(t)
i were identified and correspond to adjacent 1-buffers in the

original codeword, z(t)i contains bits that correspond to ai′ ◦ 0B ◦ bi′ for some i′. We write z
(t)
i as

z
(t)
i = ãi′ ◦ 00 · · · 0 ◦ b̃i′ where all the bits of ãi′ , b̃i′ correspond to ai′ , bi′ , respectively, and the run of

zeros in between contains 0 bits that correspond to the 0-buffer in the original codeword.
In order to create a run of zeros (in which all the zeros correspond to inner codewords) of length

at least (1 − d(M))B/2, the channel must delete all 1s from at least an interval of this size. Note
here that the length of b̃i′ is ≤ log nR which is less than (1−d(M))B/2, the threshold from which a
buffer is considered (for large enough nR). Thus, a spurious 0-buffer can be created only inside ãi′ .

6Note that if some of the bits belong to a 0-buffer, then the 0s that originally belonged to the inner codeword are
merged to the 0-buffer. Thus, a spurious 0 buffer occurs only when all its 0 bits belong to an inner codeword.

39

By the properties of our inner codes and by recalling that ζ = (1 − d(M))ν/4, any interval of
length ζnR = (1−d(M))B/4 must contain at least γζnR = γ(1−d(M))B/4 ones. Let ai, i ∈ [M−1]
be the number of ones in this interval that belong to runs of length i and denote by aM the number
of bits that belong to runs of length ≥ M . Deleting all these ones happens with probability

d(1)a1d(2)a2 · · · d(M)aM ≤

(
4 ·
∑M

i=1 aid(i)

γ(1− d(M))B

) γ(1−d(M))B
4

≤ (1− µ)γνnR/8

≤ exp(−Ωε,µ,γ(nR))

where the first inequality follows from the weighted AM-GM inequality and the second inequality is
due to the assumption that d(1) ≤ d(2) ≤ · · · ≤ d(M) ≤ 1−µ and that

∑M
i=1 ai = γ(1−d(M))B/4.

Now, union bounding over all such intervals, the probability that there exists a spurious buffer
is at most nR · exp(−Ωε,µ,γ(nR)) = exp(−Ωε,µ,γ(nR)).

The final claim regarding the buffers bounds the probability that a spurious 1-buffer is created
inside the output of channel in an encoded pair (ai, bi).

Claim 7. Assume that ai ◦ 0B ◦ bi is transmitted through the channel and let ẑ be the received
output. Then, the probability that a spurious 1-buffer is identified in ẑ is at most exp(−Ωε,µ,γ(nR)).
Moreover, the expected number of spurious 1-buffers in ẑ is at most exp(−Ωε,µ,γ(nR)) and the
maximal number of spurious buffers in ẑ is at most 32ν−1.

Proof. The claim about the probability to have a spurious 1-buffer in ẑ (and the bound on the
expected number of spurious 1-buffers) follows by the same argument as in Claim 6. The size of a
buffer is at least (1−d(M))B/2. Thus, the number of spurious buffers is at most 2nR

(1−d(M))B ≤ 32
ν .

Next, we define a pair (x(t)i , y
(t)
i) (these pairs are obtained in Step 1b) to be a good pair if there

exists a j ∈ [nout] such that all the bits of x(t)i belong to aj and all the bits of y(t)i belong to bj .
Equivalently, this means that the 1-buffers that are to the left and to the right of aj ◦ 0B ◦ bj were
identified (and there were no spurious 1-buffers inside) and the 0-buffer between aj and bj was
identified (and there were no spurious 0-buffers).

Definition 16. Let z(t) be the t-th trace and let (x(t)1 , y
(t)
1), . . . , (x

(t)
n′
t
, y

(t)
n′
t
) be the output of Step (1b).

We call a pair (x
(t)
i , y

(t)
i) a good pair if there exists j ∈ [nout] such that all the bits of x(t)i are bits

of aj and all the bits of y(t)i are bits of bj.

Our next proposition states that, with high probability, after Step (1b), there are at least
(1− ξ) · nout good pairs. Formally, we have the following.

Proposition 2. Let z(t) be the t-th trace. Let (x(t)1 , y
(t)
1), . . . , (x

(t)
n′
t
, y

(t)
n′
t
) be the output of Step (1b).

Then, with probability 1− exp(−Ω(nout)), at least nout(1− ξ) of them are good pairs.

Proof. Let z
(t)
1 , . . . , z

(t)
nt be the strings obtained in Step 1a after identifying 1-buffers. We start by

counting how many z
(t)
i s are such that the 1-buffers to the right and to the left of the z

(t)
i are two

adjacent genuine 1-buffers (by genuine we mean that bits of the identified buffer are indeed bits of
a 1-buffer and not bits of run in an inner codeword). We shall call such a z

(t)
i a good z

(t)
i .

40

By Claim 4, the probability that a specific 1-buffer is deleted is at most exp(−Ωε,µ(nR)) < ξ/10
where the inequality holds for large enough nR (recall that ξ = ε4/T and that nR will be a constant
that will be chosen in the end). Thus, the probability that more than ξnout/9 genuine 1-buffers are
not identified is at most exp(−Ω(nout)). By Claim 7, the expected number of spurious 1-buffers
between two adjacent genuine 1-buffers is at most exp(−Ων,µ,γ(nR)) < ξ/10 and the maximal
number of spurious buffers in the channel output on aj ◦ 0B ◦ bj is at most 32ν−1. Thus, we can
apply Hoeffding’s bound (Lemma 3), and get that the probability of having more than ξnout/9
spurious 1-buffers in the whole received string is at most exp(−Ω(nout)). Thus, with probability
1 − exp(−Ω(nout)) at least nout(1 − ξ/9) genuine 1-buffers were identified and at most ξnout/9
spurious buffers were identified. Consequently, it is easy to observe that there must be at least
nout(1 − 5ξ/9) z

(t)
i s that are good z

(t)
i s. Indeed, every deleted genuine buffer in the worst case

transforms two potential good zis into one bad zi, and every spurious 1-buffer transforms one
potential good zi into two bad zis.

We now turn to look inside the good z
(t)
i s. A good z

(t)
i will be transformed into a good pair

(see Definition 16) if the 0-buffer is correctly identified and there are no spurious 0-buffers inside.
According to Claim 5, the 0-buffer is deleted with probability exp(−Ωε,µ(nR)) < ξ/10, and according
to Claim 6 the probability to have a spurious 0-buffer in z

(t)
i is at most exp(−Ωε,µ,γ(nR)) < ξ/10.

Thus, with probability at least 1− ξ/5, a good z
(t)
i is transformed into a good pair (x(t)i , y

(t)
i). Note

that by the behavior of the channel, the event that z(t)i is transformed into a good pair is independent
of all other z

(t)
i . Thus, applying a Chernoff bound we get that with probability 1− exp(−Ω(nout)),

there are at least (1− ξ/4) · nout(1− 5ξ/9) ≥ nout(1− ξ) good pairs.

Remark 10. We emphasize that in our construction nR is a constant (with respect to nout) that
can be made as large as we wish. Specifically, we need nR to be such that all the inequalities that
involve it in the proof of Proposition 2 will hold. Also, recall from the construction that nR is also
at least 2n(εS ,ζ) for some function n. This implies that there exists nR,0 = nR,0(ε, εS , µ, γ, ζ) such
that for every nR > nR,0, all the inequalities are true.

Our next claim shows that, with high probability, the synchronization symbol is successfully
decoded in almost all of the good pairs.

Claim 8. With probability at least 1− exp(−Ω(nout)), there are at least (1− 2εS) ·nout(1− ξ) good
pairs (x

(t)
i , y

(t)
i) for which y

(t)
i was correctly decoded.

Proof. y
(t)
i is the output of a 01-trimming BDC-RL-Bounded(d, µ,M) on some input x. According

to the inner code that we chose for the synchronization symbols, we have the assumption that the
probability of decoding error is at most εS . Thus, by the independentness induced by the channel,
we can apply a Chernoff bound (Lemma 2) and get the claimed result.

Now, we prove the correctness of our decoding algorithm.

Proposition 3. Fix the parameters as described in Section 6.2 and Table 1. Let m ∈ Σ
(1−ε/4)nout
out

be a message that is encoded to a codeword c using our encoding algorithm. Let z(1), . . . , z(T) be T
traces of c under the channel BDC-RL-Bounded(d, µ,M). Then, with probability 1−exp(−Ω(nout)),
the decoding algorithm on input z(1), . . . , z(T) outputs the correct message m.

Proof. For a fixed trace, say the t-th trace, by Proposition 2 and Claim 8, with probability at least
1 − exp(−Ω(nout)) there are at least (1 − 2εS)(1 − ξ)nout of pairs (xi, yi) for which the decoding
of yi resulted in the correct synchronization symbol. Also, observe that the number of total pairs

41

(good and bad), denoted by n′
t in Step (1b) can be upper bounded by n′

t ≤ nt ≤ (1 + 2ξ/9)nout.
Indeed, nt is the number of zis in Step (1a), and clearly in Step (1b) this number can only decrease.
Furthermore, note that nout−nt ≤ 2 ·#spurious buffers, and so, by the proof of Proposition 2, with
probability 1− exp(−Ω(n)) the number of spurious buffers is at most ξnout/9.

This implies that the symbols s̃
(t)
1 , . . . , s̃

(t)
n′
t

obtained in Step (1c) can be obtained from S =

s1 · · · sn by performing at most (2εS + ξ)nout deletions and at most

n′
t − (1− 2εS − ξ)nout ≤ (1 + 2ξ/9)nout − (1− 2εS + ξ)nout ≤ (2εS + 2ξ)nout

insertions. In total, there are at most (4εS + 3ξ)nout insdel errors between S and s̃
(t)
1 , . . . , s̃

(t)
n′
t
. By

Lemma 17, the number of correctly matched synchronization symbols is at least nout(1 − 4εS −
3ξ − 3

√
η). Thus, after Step (1e), we have (ã

(t)
1 , . . . , ã

(t)
nout) where at least nout(1− 4εS − 3ξ − 3

√
η)

indices j ∈ [nout] are such that ã
(t)
j is a trace of a 10-trimming BDC-RL-Bounded(d, µ,M) channel

applied to aj . In this case, we say that the trace-alignment procedure succeeded and it happens with
probability 1 − exp(−Ω(nout)). Union bounding over all T traces, we have that with probability
at least 1− T · exp(−Ω(nout)) = 1− exp(−Ω(nout)), the trace-alignment procedure succeeds for all
traces.

Now, given that the trace-alignment procedure succeeded for all traces, we turn to count for how
many indices j ∈ [nout] the vector (ã

(1)
j , . . . , ã

(T)
j) represents indeed T traces of aj . This happens

if for all traces the pair (aj , bj), after being encoded and transmitted through the channel complies
with the following conditions for the t-th trace, for all t ∈ {1, . . . , T}:

• After Step (1a), there exists an index i such that all the bits in z
(t)
i correspond to aj ◦ 0B ◦ bj .

• After Step (1b), the pair (x(t)i , y
(t)
i) is a good pair. In particular, all the bits of x(t)i correspond

to aj and all the bits of y(t)i correspond to bj .

• After Step (1c), we have s̃
(t)
i = sj , namely, the decoding of y(t)i to the synchronization symbol

succeeded.

• After Step (1d), we get that the positioning of s̃(t)i in the synchronization string s1 · · · sn is
correct.

In each trace, there are at most (4εS + 3ξ + 3
√
η)nout indices j ∈ [nout] for which one of the

conditions does not hold. Thus, in total there are at most T · (4εS +3ξ+3
√
η)nout indices j ∈ [nout]

for which there is a trace t ∈ [T] such that one of the conditions above does not hold.
Now, recall that our code CR is such that the decoding failure probability under the 10-trimming

BDC-MT-RL-Bounded(d, T, µ,M) channel is εR. Thus, the probability that there are more than
(1 − 2εR) · nout(1 − 4TεS − 3Tξ − 3T

√
η) failures when trace-decoding these symbols is at most

exp(−Ω(nout)). Recalling that ξ = εR = εS = ε4/T and η = ε8/T , with probability 1−exp(−Ω(n))
we get that for at least a (

1− 2ε4

T

)
·
(
1− 10ε4

)
≥ 1− 12ε4 ≥ 1− ε3

40

fraction of indices j ∈ [nout] the trace-decoding procedure of CR succeeds in Step 2. Therefore,
with probability 1 − exp(−Ω(n)) the Hamming distance between (r1, . . . , rn) (the original outer
codeword) and r̃1, . . . , r̃n is at most ε3nout/40 and thus, by Proposition 1, the decoder of the outer
code can decode it.

42

We now prove Theorem 13.

Proof of Theorem 13. Note that the claim about the rate is given in Section 6.2, specifically, the
rate is computed in Equation (17). Further, observe that the claim about the decoding failure
probability is given by Proposition 3. Thus, we are left to justify the claim about the complexity
of the encoding and decoding algorithms.

We start with the encoding algorithm. In the first step we run the encoding algorithm of the
inner codes which runs in time O(nout). Then, in the second step, each symbol in the outer codeword
is encoded using the encoder of CR and every symbol of the synchronization symbol is encoded using
the encoder of CS . Recall that the lengths of CR is nR (and the length of CS is log nR) which is
constant with respect to nout. Therefore, the complexity of this step is O(nout). Finally, placing
the buffers in the third step also takes linear time. Thus, the encoder takes O(nout) time.

Now, we analyze the complexity of the decoding algorithm. In the trace-alignment step, Steps 1a
and 1b which search for buffers are performed in linear time. In Step 1c, we run the decoder of
CS on at most nout symbols and thus this is done in O(nout) time. In Steps 1d and 1e we run
the matching algorithm from Lemma 17 which runs in time O(n2

out) and then simply reposition
the output. Thus, the trace-alignment step takes O(n2

out) time. Then, Step 2 which decodes every
trace using the decoding algorithm of CR (again, recall that nR is constant with respect to nout),
takes O(nout) time. Finally, the decoding of the corrupted outer codeword in Step 3 takes O(nout)
according to Proposition 1. We conclude that the decoder takes O(n2

out) time.

Remark 11. We emphasize here the order by which the parameters are set in order to make sure
that there are no circular dependencies. First, the channel parameters are γ,M, T, and µ. We let ε
be the desired gap to capacity we want to achieve. This sets the parameters εS , εR, ξ, ν, η, δout, and
γ. Now, we choose large enough nR so that all the constraints hold (those in the Proposition 2 and
those imposed by the Corollary 2 and the construction).

We emphasize that all the parameters mentioned are independent of nout.

7 Lower bounds on the capacity of a threshold deletion channel

In this section, we consider a simple example of a runlength-dependent channel and compute lower
bounds on its capacity. The channel is defined next.

Definition 17. Let BDC-Thr(τ, d) be a runlength-dependent deletion channel that acts as follows
on every input run of length ℓ. If ℓ < τ , the channel leaves this runs as is. Otherwise (if ℓ ≥ τ),
every bit of this run is deleted independently with probability d.

As discussed in Section 1, the motivation to define and study such a channel comes from error
patterns observed in DNA-based storage systems. We provide two lower bounds on the capacity
of BDC-Thr(τ, d), which we plot for the special cases τ = 2, 3. We emphasize here that since
this channel is a runlength-dependent deletion channel and complies with Definition 11, both lower
bounds can be turned into explicit and efficient codes using Theorem 11.

7.1 First lower bound

Here we closely follow the approach of Diggavi and Grossglauser [DG06] and Drinea and Mitzen-
macher [DM06] and provide a simple lower bound on the capacity of BDC-Thr(τ, d). We prove the
following.

43

Theorem 15. Let d ∈ [0, 1] and τ ∈ N be such that d · τ+1
2τ ≤ 1/2. The capacity of BDC-Thr(τ, d)

is at least 1− h
(
d · τ+1

2τ

)
.

The following proposition states that, with high probability, the fraction of bits that belong to
runs of length ≥ τ in a uniform random binary string is close to τ+1

2τ .

Proposition 4. Let X be a uniformly random binary string in {0, 1}N . Then, with probability
1 − exp(−Θ(N1/3)), the number of bits that belong to runs of length at least t is at most (τ+1

2τ +

Θ(N−1/3)) ·N .

Proof. We will view a random string X as being generated using a geometric distribution with
parameter 1/2 in the following way. Let b0 = Ber(1/2) (where Ber stands for the Bernoulli distri-
bution). Then, for each i = 1, 2, . . . let ri be sampled from Geom(1/2) denote the length of the i-th
run in X where the symbol of this run, bi, is b̄i−1 (the opposite bit). We truncate this process when
the resulting string is of length N (possibly trimming the last run). The expected number of runs
is N/E[Geom(1/2)] = N/2. Observe also that the expected number of runs of length i is 2−i ·N/2.
We will denote by r(X) the number of runs in X.

Now, the expected number of runs of length < τ is

N

2

τ−1∑
i=1

i

2i
=

N

4

τ−1∑
i=1

i

2i−1

=
N

4

(τ−1∑
i=1

xi

)′
x= 1

2

=
N

4

[(
1− xτ

1− x

)′]
x= 1

2

=
N

4

[
−τxτ−1(1− x) + (1− xτ)

(1− x)2

]
x= 1

2

= N
(
1− 2−τ (τ + 1)

)
. (19)

Next, we will show that with probability 1−exp(−Θ(N1/3)), the length of Y , the received code-
word, is at least N(1− 2−τ (τ + 1)− ε) for any constant ε. Indeed, first observe that with probability
at least 1 − exp(−Θ(N1/3) the number of runs in X is in the interval [(1 − Θ(N−1/3))N/2, (1 +
Θ(N−1/3))N/2]. The proof of this claim can be found in [DM06, Proposition 1]. For simplicity, we
will simply write (1±Θ(N−1/3))N/2 to denote the respective interval.

Now, we claim that, conditioned on r(X) = (1 ± Θ(N1/3))N/2, with probability at least 1 −
exp(−Θ(N1/3)) the number of runs of length i in X is at least 2−i(1 − Θ(N−1/3))2N/2 for all
i ∈ [τ − 1]. Indeed, let Zi be a random variable that corresponds to the number of runs of length i
in X. Then, conditioned on r(X) = (1±Θ(N−1/3))N/2, we have

Pr

[
Zi < 2−i · (1−Θ(N−1/3))2 · N

2

]
≤ Pr

[
Zi < (1−Θ(N−1/3)E[Zi])

]
≤ exp(−Θ(N1/3)),

where the last inequality follows by a Chernoff bound. Now, as τ is constant with respect to N , we
conclude that, conditioned on r(X) = (1 ± Θ(N−1/3))N/2, the probability that for all i ∈ [τ − 1]

44

we have Zi ≥ 2−iN/2(1−Θ(N−1/3))2 is 1− t · exp(−Θ(N1/3)) = 1− exp(−Θ(N1/3)). In this case,
the number of bits in X that belong to runs of length ≥ t is at most

N − N

2
(1−Θ(N−1/3))2

τ∑
i=1

i

2i
= N

(
1− (1−Θ(N−1/3))2(1− 2−τ (τ + 1))

)
≤ N

(
τ + 1

2τ
+Θ(N−1/3)

)
,

where the first equality follows by simply repeating the computation done above in Equation (19).
We conclude that the probability that this does not happen is at most the sum of the following
probabilities

• r(X) ̸= (1±Θ(N−1/3))N/2. As shown above, this occurs with probability exp(−Θ(N1/3)).

• r(X) = (1 ± Θ(N−1/3))N/2 and there exists an i ∈ [τ − 1] such that Zi < 2−iN/2(1 −
Θ(N−1/3))2. As shown above, this occurs with probability exp(−Θ(N1/3)).

The proposition follows.

To prove Theorem 15, we will need the following well-known result which gives the exact size of
the insertion ball around a string.

Lemma 18 ([Lev01, Equation 24]). Let y ∈ {0, 1}|y| be a string. The number of strings x ∈ {0, 1}n

that contain y as a subsequence is
∑n−|y|

i=1

(
n
i

)
.

We are now ready to prove Theorem 15. The improvement over the bound of 1− h(d) [DG06]
for the binary deletion channel comes from the observation that a typical output Y in this channel
is of length ≈ (1 − d · τ+1

2τ)N , which is greater than ≈ (1 − d)N . The proof will closely follow the
proof of [DG06, Theorem 4.2] and incorporate the necessary modifications.

Proof of Theorem 15. Generate a random codebook with 2NR i.i.d. codewords chosen uniformly
from {0, 1}N . Let X be a transmitted codeword and Y be the output of the channel on X. By
Proposition 4, with probability at least 1−exp(−Θ(N−1/3)), the number of bits that can be deleted
in X (i.e., the number of bits that belong to runs of length at least τ) is at most N(τ+1

2τ +Θ(N−1/3)).
On these bits, the channel acts in an i.i.d. fashion and deletes each bit with probability d. Thus,
conditioned on X having at most N(τ+1

2τ +Θ(N−1/3)) bits that belong to runs of length at least τ ,
the probability that more than (d+Θ(N−1/3)) ·N(τ+1

2τ +Θ(N−1/3)) bits are deleted from X is at
most exp(−Θ(N1/3)).

Thus, conditioned on X having at most N(τ+1
2τ +Θ(N−1/3)) bits that belong to runs of length

at least τ , we have that

|Y | ≥ N −
(
d · τ + 1

2τ
N +Θ(N2/3)

)
= N

(
1− d · τ + 1

2τ
−Θ(N−1/3)

)
(20)

with probability at least 1− exp(−Θ(N1/3)).
Our decoding algorithm is as follows. Upon receiving Y , if |Y | < N

(
1− d · τ+1

2τ −Θ(N−1/3)
)
,

we declare “short” error, and denote this event by Pshort. Otherwise, we check if Y is a subsequence
of a single codeword in C. If it is, then it must be X and we declare success. If Y is a subsequence
of two or more codewords, we declare a collision error. Denote this event by Pcol.

We turn to computing the collision error, assuming that the length of Y is at least m where m
is the right-hand side of Equation (20). Let X1 be a transmitted codeword, and let X2 be a random

45

string. As in [DG06], we first upper bound the probability that the decoding algorithm declares
collision error because of X2 as

Pcol,X2 :=
∑

Y,|Y |≥m

Pr[Y is subsequence of X2 | X1] Pr[Y |X1]

=
N∑

j=m

(N−j∑
i=1

(
N

i

)
· 2−N

)
·

 ∑
Y,|Y |=j

Pr[Y |X1]

 · Pr[|Y | = j]

≤ 2−N

N∑
j=m

N−j∑
i=1

(
N

i

)

≤ 2−N · (N −m+ 1)2 ·
(

N

N −m

)
≤ 2−N(1−h(t+1

2t
·d+o(1))−o(1))

The second equality follows by Lemma 18 and taking into consideration that the insertion ball
depends only on the length of Y . The first inequality follows since the sum of all probabilities
(conditioned on Y having length at least j) equals 1. The second inequality is due to the assumption
that d · τ+1

2τ < 1
2 which implies that N −m < N/2. The last inequality follows by the bound

(
N
αN

)
<

2Nh(α) for α ≤ 1/2. Thus, we union bound over all X2 ∈ C and get that the Pcol = 2NRPcol,X2 .
Thus,

Pe = Pcol + Pshort

≤ 2N(R−(1−h(τ+1
2τ

·d+o(1))−o(1))) + exp(−Θ(N1/3)) .

As a result, for any constant ε > 0, for R = 1− h(τ+1
2τ · d)− ε it holds that limN→∞ Pe → 0.

7.2 Second lower bound

In this section we provide another lower bound on the capacity of BDC-Thr(τ, d). For this lower
bound, we will greedily construct binary codes that can be reliably decoded against an adversary
that is very restricted with the deletions that he can apply. We note that this construction is
inspired by the binary inner code given in [CS22]. However, the codes we design here are more
structured and tailored for this particular channel. For v1, . . . , vτ such that

∑τ
i=1 vi = 1, we define

H((v1, . . . , vτ)) :=
∑τ

i=1−vi log vi.
We prove the following.

Theorem 16. Let d ∈ (0, 1), M and τ be positive integers, and β1, . . . , βτ ∈ [0, 1] be such that∑τ
i=1 iβi = 1. Denote β =

∑τ
i=1 βi. Then, the capacity of BDC-Thr(τ, d) is at least

β ·H
(

1
β · (β1, . . . , βτ)

)
− (2βτ + g(d))h

(
g(d)

2βτ+g(d)

)
− h(g(d))

(1− βττ) + βτM
,

where

g(d) = 2τ · dM +
τ∑

i=1

(τ − i)

(
M

i

)
(1− d)idM−i.

46

We start by borrowing a lemma from the pioneering work of Levenshtein [Lev66] who first
considered recovering from worst-case insertions and deletions. The lemma gives an upper bound
on the deletion ball of a string that depends on the number of runs of the string. Formally, we have
the following.

Lemma 19 ([Lev66]). Let s be a string and denote by r(s) the number of runs in s. There are at
most (

r(s) + ℓ− 1

ℓ

)
different subsequences of s of length |s| − ℓ.

We start with defining a set of strings from which we shall pick our codewords.

Definition 18. Let β1, . . . , βτ ∈ [0, 1] such that
∑τ

i=1 iβi = 1. Let Sβ1,...,βτ ⊂ {0, 1}N be a set that
contains all strings that

1. Contain only runs of length ≤ τ .

2. The number of runs of length i ∈ [τ] is exactly βim.

The next claim gives a lower bound on the size of Sβ1,...,βτ .

Claim 9. Given Sβ1,...,βτ , denote β =
∑τ

i=1 βi. Then,

1

N
log2 |Sβ1,...,βτ | ≥ H

(
1

β
(β1, . . . , βτ)

)
− o(1) .

Proof. Clearly, we have that

|Sβ1,...,βτ | =
(βN)!

(β1N)! · · · (βτN)!
.

Then, the bound follows by using Stirling’s approximation (e.g., [MU05, Lemma 7.3]).

We will construct a code C ⊂ Sβ1,...,βτ that is robust against an adversary that performs a δ
fraction of restricted deletions. More formally, we have the following definition.

Definition 19. We call an adversary a (δ, τ)-restricted adversary, if given a string s = r1 ◦ r2 ◦
· · · ◦ rβN , he is allowed to perform deletions only to runs ri such that ri or ri−1 are of length τ .

Our next two claims will compute the size of a “deletion ball” and the size of an “insertion ball”
under the (δ, τ)-restricted adversary.

Claim 10. Let s ∈ Sβ1,...,βτ . Then, (δ, τ)-restricted adversary defined in Definition 19 can produce
at most (

2βτN + δN

δN

)
different subsequences of s.

Proof. The number of runs of length τ is βτN . Therefore, by Definition 19, the (δ, τ)-restricted
adversary can apply deletions only to 2βτN runs. As in the proof of Lemma 19 in [Lev66], we
observe that each subsequence can be described by the number of deletions applied to each run.
The proposition follows by the equivalence to the “stars and bars” paradigm.

47

To bound the number of different strings s ∈ Sβ1,...,βτ for which the (δ, τ)-restricted adversary
can turn s into s′, we use a lemma from [GW17] that provides a general upper bound on the number
of strings in {0, 1}N that contain a particular string s′ ∈ {0, 1}N−δN as a subsequence.

Lemma 20 ([GW17, Lemma 7]). Let δ ∈ (0, 1/2) and let s′ ∈ {0, 1}N−δN . The number of strings
s ∈ {0, 1}N that contain s′ as a subsequence is at most δN

(
N
δN

)
.

Since Sβ1,...,βτ ⊆ {0, 1}N , we have the following claim

Claim 11. Let s′ ∈ {0, 1}N−δN be a string that was obtained the (δ, τ)-restricted adversary that
was given in a string in Sβ1,...,βτ . Then, there are at most δN

(
N
δN

)
strings s ∈ Sβ1,...,βτ that can be

transformed to s′ by the (δ, τ)-restricted adversary.

Combining these two claims, we can claim the existence of a code C ⊆ Sβ1,...,βτ with a certain
rate that is robust against the (δ, τ)-restricted adversary (defined in Definition 19).

Proposition 5. Let δ ∈ (0, 1). Let β1, . . . , βτ ∈ [0, 1] be such that
∑τ

i=1 iβi = 1 and denote
β =

∑τ
i=1 βi. There is a code C ⊂ Sβ1,...,βτ with rate

H

(
1

β
(β1, . . . , βτ)

)
− (2βτ + δ)h

(
δ

2βτ + δ

)
− h(δ)− o(1)

that is robust against the (δ, τ)-restricted adversary.

Proof. We construct the code greedily. Each time we add a string c from Sβ1,...,βτ to our codebook
C, we need to discard from Sβ1,...,βτ all the strings that are confusable with c. That is, all strings
in s ∈ Sβ1,...,βτ for which the (δ, τ)-restricted adversary can transform s and c into the same string.

By Claim 10 and Claim 11, each string added to the code is confusable with at most

δN ·
(
2β2N + δN

δN

)
·
(
N

δN

)
strings in Sβ1,...,βτ . Then, we have

1

N
log2 |C| ≥ 1

N
log2 |Sβ1,...,βτ | −

1

N
log2

∣∣∣∣δN ·
(
2β2N + δN

δN

)
·
(
N

δN

)∣∣∣∣
The proposition follows by Claim 9 and by applying the Stirling approximation.

We now introduce our construction, which basically takes the code guaranteed by Proposition 5
and blows up the runs of length τ .

Construction 1. Let M ≥ τ be an integer and let C′ be the code guaranteed by Proposition 5.
Define C to be the code obtained from C′ by transforming each run of length τ to a run of length M .
The rate of C is

H
(

1
β (β1, . . . , βτ)

)
− (2βτ + δ)h

(
δ

2βτ+δ

)
− h(δ)

1 + (M − t)βτ
− o(1) .

Our next theorem states that this code is robust against the channel BDC-Thr(τ, d). We denote
by Bin(n, p) the binomial distribution.

48

Theorem 17. Let M and τ be integers where M ≥ τ . Let β1, . . . , βτ ∈ [0, 1] be such that
∑τ

i=1 iβi =
1 and denote β =

∑τ
i=1 βi. Let δ ∈ (0, 1/2) and denote by C the code from Construction 1 when

given δ, β1, . . . , βτ and M . Let Z ∼ Bin(M, 1− d) and for every nonnegative integer i, define

P (τ)→(i) := Pr[Z = i]

and let

α := βτ ·

(
2τP (τ)→(0) +

τ−1∑
i=1

(τ − i)P (τ)→(i)

)
. (21)

Let c ∈ C be a codeword and let y be the output of the channel BDC-Thr(τ, d) on c. If α < δ, there
exists an algorithm that given y as input outputs c with probability 1− exp(−Θ(n)).

Proof. To prove the theorem, we will present a decoding algorithm and prove that it succeeds with
probability 1 − exp(−Ω(N)). Let C be the code given in Construction 1 and denote by C ′ the
associated code given by Proposition 5. That is, for every c′ ∈ C ′ we obtain c ∈ C by turning the
τ -runs into M -runs. Assume that c was transmitted, assume that the channel output on c was c̃,
and denote by c′ the respective codeword in C ′. Next, we give the decoding algorithm.

Decoding algorithm.

1. For every run in c̃, if its length is at least τ , decode it as a run of length τ . Denote the output
of this step as c̃′ and note that c̃′ contains only runs of length ≤ τ .

2. Find a codeword in C such that the (δ, τ)-restricted adversary can produce c̃ from this code-
word. Return this codeword.

Recall that the channel can apply deletions only to runs with length at least τ and that we
have exactly βτN such runs in c (and in c′). Denote these runs in c′ by r1, . . . , rβτN . We denote
by Zi, i ∈ [βτN] the random variables that correspond to the number of bits that survived after
transmitting the blowed up version ri, of length M . Clearly, Zi ∼ Bin(M, 1 − d). Define the
following random variable for i ∈ [βτm]:

Xi :=

0, if Zi ≥ τ

τ − Zi, if 0 < Zi < τ

2τ if Zi = 0

.

We claim that ED(c′, c̃′) ≤
∑βτm

i=1 Xi, and in particular it bounds the number of deletions that were
performed to c′ in order to obtain c̃′ (recall that c′ is the codeword of C ′). Indeed,

• If Zi ≥ τ , then in Step 1, the algorithm decodes it as runs of length τ and no deletion occurred
in the run ri.

• If 0 < Zi < τ , then in Step 1, the algorithm decodes it as runs of length Zi and thus τ − Zi

deletions happened to ri.

• If Zi = 0, then this run is completely deleted by the channel. In this case, the run before and
the run after merge to a single run of the same symbol. Then, in Step 1, the merged run is
decoded to a single run. In this case, the channel caused τ deletions (the run ri of length τ was
completely deleted) and the decoding algorithm caused another at most ≤ τ deletions. More
formally, assume that we have the following sequence of runs r1 ◦r2 ◦· · ·◦r2ℓ+1 ◦r2ℓ+2 in c′ and

49

that the runs r2, r4, . . . , r2ℓ were deleted by the channel and that r1 and r2ℓ+1 and r2ℓ+2 were
not deleted by the channel. The decoding algorithm sees a long run of the same symbol and
decodes it as a single run. Then, in the worst case scenario, the decoding algorithm deletes
all the bits that correspond to r3, . . . , r2ℓ+1. Indeed, if the |r1| < τ then the length of the
decoded merged run is at least r1, and if |r1| = τ the length of the decoded merged run is
at least Z1. In both cases, the number of additional deletions caused by the merge and the
decoding algorithm is at most |r3|+ |r5|+ · · ·+ |r2ℓ+1| ≤ τ · ℓ. Therefore, in total, we suffered
at most 2τℓ deletions.

We have shown that ED(c′, c̃′) ≤
∑βτm

i=1 Xi. We also observe that c̃′ can be obtained from c′ by the
(δ, τ)-restricted adversary. Indeed, by the cases analyzed above and the definition of the Xis, every
deletion is applied to a run of length τ or to the subsequent run. Our next goal is to provide an
upper bound for the variable X :=

∑βτN
i=1 Xi that holds with high probability. First, observe that

E[X] ≤

(
2τP (τ)→(0) +

τ−1∑
i=1

(τ − i)P (τ)→(i)

)
· βτN . (22)

On the other hand, since the event 0 < Zi < τ causes exactly τ − Zi deletion and the event Zi = 0
causes at least τ deletion, we can also lower bound E[X] by

E[X] ≥

(
τP (τ)→(0) +

τ−1∑
i=1

(τ − i)P (τ)→(i)

)
· βτN . (23)

Note that the Xis are independent random variables (by the nature of the channel). Also,
0 ≤ Xi ≤ 2τ and they have finite first and second moments. Thus, we apply Lemma 3 and get that
for any ν > 0,

Pr[X > (1 + ν)E[X]] ≤ exp

(
−2ν2(E[X])2

βτN · 4τ2

)
≤ exp(−Ω(N)) , (24)

where the second inequality follows from the lower bound for E[X] in Equation (23). We have

Pr[ED(c, c̃) > δN] ≤ Pr[X > δN]

= Pr

[
X >

(
1 +

δ − α

α

)
αN

]
≤ Pr

[
X >

(
1 +

δ − α

α

)
E[X]

]
≤ exp(−Ω(N)) .

The first inequality follows by the claim that X is an upper bound on ED(c′, c̃′). The second
inequality follows by the assumption E[X] ≤ αN and the last inequality follows by the assumption
that δ > α and substituting ν = (δ − α)/α in Equation (24). To conclude, the probability that
ED(c′, c̃′) ≤ δN is at least 1 − exp(−Ω(N)). Now, since the code C ′ is robust against the (δ, τ)-
restricted adversary, and since we showed that all the deletions performed by the channel or the
algorithm are of this kind, the theorem follows.

7.3 Achievable rates for τ = 2 and τ = 3

We provide plots of the lower bounds on the capacity of the BDC-Thr(τ, d) channel derived in
previous sections, where we focused on τ = 2 (Figure 1) and τ = 3 (Figure 2). Observe that both

50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

d

R
a
te

1− h
(
3
4d
)

Theorem 15
Theorem 16

Figure 1: Lower bounds on the capacity of the BDC-Thr(τ, d) for τ = 2.

our lower bounds given by Theorem 15 and Theorem 16 do not provide efficient coding schemes by
default. Nevertheless, by invoking Theorem 11, these two lower bounds can be transformed into
explicit and efficient codes for the BDC-Thr(τ, d) channel. Also, note that the lower bound implied
by Theorem 16 contains several parameters (β1, . . . , βτ ,M). Therefore, we implemented a greedy
search on these parameters to numerically maximize the lower bound and ran it for every deletion
probability d, with two-digit precision.

We note that in the case of τ = 3, the transmitter can send strings in {0, 1}N that contain only
runs of length 1 or runs of length 2 and the receiver receives those strings without any error. Thus,
a baseline lower bound for the capacity of BDC-Thr(τ, d) when τ = 2 is log2((1 +

√
5)/2)− o(1) ≤

0.6943. Indeed, the number of such strings of length n is given by the n-th Fibonacci number,
defined by the recurrence F (n) = F (n− 1) + F (n− 2). Our lower bounds improve on this baseline
lower bound.

Acknowledgments

The authors thank Elena Grigorescu for many fruitful discussions on this problem.
R. Con was supported in part by the European Union (DiDAX, 101115134). Views and opinions

expressed are however those of the authors only and do not necessarily reflect those of the European
Union or the European Research Council Executive Agency. Neither the European Union nor the
granting authority can be held responsible for them. J. Ribeiro was supported by FCT/MECI
through national funds and when applicable co-funded EU funds under UID/50008: Instituto de
Telecomunicações.

51

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

d

R
a
te

0.6943

1− h
(
1
2d
)

Theorem 15
Theorem 16

Figure 2: Lower bounds on the capacity of the BDC-Thr(τ, d) for τ = 3.

References

[AT23] Dar Arava and Ido Tal. Stronger polarization for the deletion channel. In 2023 IEEE
International Symposium on Information Theory (ISIT), pages 1711–1716. IEEE,
2023.

[BKKM04] Tugkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew McGregor. Recon-
structing strings from random traces. In SODA, volume 4, pages 910–918, 2004.

[BLC+16] James Bornholt, Randolph Lopez, Douglas M. Carmean, Luis Ceze, Georg Seelig, and
Karin Strauss. A DNA-based archival storage system. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’16, page 637–649, New York, NY, USA, 2016. As-
sociation for Computing Machinery.

[BLS20] Joshua Brakensiek, Ray Li, and Bruce Spang. Coded trace reconstruction in a constant
number of traces. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 482–493, 2020.

[CDL+22] Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha. Near-
optimal average-case approximate trace reconstruction from few traces. In Proceedings
of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
779–821. SIAM, 2022.

[CGMR20] Mahdi Cheraghchi, Ryan Gabrys, Olgica Milenkovic, and João Ribeiro. Coded trace
reconstruction. IEEE Transactions on Information Theory, 66(10):6084–6103, 2020.

52

[Cha21] Zachary Chase. New lower bounds for trace reconstruction. Annales de l’Institut Henri
Poincaré, Probabilités et Statistiques, 57(2):627 – 643, 2021.

[CHL+19] Kuan Cheng, Bernhard Haeupler, Xin Li, Amirbehshad Shahrasbi, and Ke Wu. Syn-
chronization strings: Highly efficient deterministic constructions over small alpha-
bets. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2185–2204. SIAM, 2019.

[CR21] Mahdi Cheraghchi and João Ribeiro. An overview of capacity results for synchroniza-
tion channels. IEEE Transactions on Information Theory, 67(6):3207–3232, 2021.

[CS22] Roni Con and Amir Shpilka. Improved constructions of coding schemes for the binary
deletion channel and the Poisson repeat channel. IEEE Transactions on Information
Theory, 68(5):2920–2940, 2022.

[dBE52] Nicolaas Govert de Bruijn and Paul Erdős. Some linear and some quadratic recursion
formulas. ii. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen:
Series A: Mathematical Sciences, 14:152–163, 1952.

[DG06] Suhas Diggavi and Matthias Grossglauser. On information transmission over a finite
buffer channel. IEEE Transactions on Information Theory, 52(3):1226–1237, 2006.

[DM06] Eleni Drinea and Michael Mitzenmacher. On lower bounds for the capacity of deletion
channels. IEEE Transactions on Information Theory, 52(10):4648–4657, 2006.

[Dob67] Roland L. Dobrushin. Shannon’s theorems for channels with synchronization errors.
Problemy Peredachi Informatsii, 3(4):18–36, 1967.

[EZ17] Yaniv Erlich and Dina Zielinski. DNA fountain enables a robust and efficient storage
architecture. Science, 355(6328):950–954, 2017.

[Fei59] Amiel Feinstein. On the coding theorem and its converse for finite-memory channels.
Information and Control, 2(1):25–44, 1959.

[FR20] Zoltán Füredi and Imre Z. Ruzsa. Nearly subadditive sequences. Acta Mathematica
Hungarica, 161(2):401–411, 2020.

[GBC+13] Nick Goldman, Paul Bertone, Siyuan Chen, Christophe Dessimoz, Emily M LeProust,
Botond Sipos, and Ewan Birney. Towards practical, high-capacity, low-maintenance
information storage in synthesized DNA. Nature, 494(7435):77–80, 2013.

[GHP+15] Robert N Grass, Reinhard Heckel, Michela Puddu, Daniela Paunescu, and Wendelin J
Stark. Robust chemical preservation of digital information on DNA in silica with
error-correcting codes. Angewandte Chemie International Edition, 54(8):2552–2555,
2015.

[GI05] Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with
near-optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400, 2005.

[GL19] Venkatesan Guruswami and Ray Li. Polynomial time decodable codes for the binary
deletion channel. IEEE Transactions on Information Theory, 65(4):2171–2178, 2019.

[GW17] Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-
rate regimes. IEEE Transactions on Information Theory, 63(4):1961–1970, 2017.

53

[HMG19] Reinhard Heckel, Gediminas Mikutis, and Robert N. Grass. A characterization of the
DNA data storage channel. Scientific reports, 9(1):9663, 2019.

[HPP18] Nina Holden, Robin Pemantle, and Yuval Peres. Subpolynomial trace reconstruction
for random strings and arbitrary deletion probability. In Conference On Learning
Theory, pages 1799–1840. PMLR, 2018.

[HPPZ20] Nina Holden, Robin Pemantle, Yuval Peres, and Alex Zhai. Subpolynomial trace
reconstruction for random strings and arbitrary deletion probability. Mathematical
Statistics and Learning, 2(3):275–309, 2020.

[HRS19] Bernhard Haeupler, Aviad Rubinstein, and Amirbehshad Shahrasbi. Near-linear time
insertion-deletion codes and (1+ ε)-approximating edit distance via indexing. In Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages
697–708, 2019.

[HS21a] Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings and codes
for insertions and deletions—a survey. IEEE Transactions on Information Theory,
67(6):3190–3206, 2021.

[HS21b] Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: Codes for
insertions and deletions approaching the Singleton bound. J. ACM, 68(5), September
2021.

[Jus72] Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE Trans-
actions on information theory, 18(5):652–656, 1972.

[Lev66] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Proceedings of the Soviet physics doklady, 1966.

[Lev01] Vladimir I. Levenshtein. Efficient reconstruction of sequences from their subsequences
or supersequences. Journal of Combinatorial Theory, Series A, 93(2):310–332, 2001.

[LT21] Yonglong Li and Vincent Y. F. Tan. On the capacity of channels with deletions and
states. IEEE Transactions on Information Theory, 67(5):2663–2679, 2021.

[MBT10] Hugues Mercier, Vijay K. Bhargava, and Vahid Tarokh. A survey of error-correcting
codes for channels with symbol synchronization errors. IEEE Communications Surveys
Tutorials, 12(1):87–96, First Quarter 2010.

[MD24] Ruslan Morozov and Tolga M. Duman. On the capacity of channels with Markov
insertions, deletions and substitutions. In 2024 IEEE International Symposium on
Information Theory (ISIT), pages 3444–3449, 2024.

[MD25] Ruslan Morozov and Tolga M. Duman. Markov insertion/deletion channels: Informa-
tion stability and capacity bounds, 2025. https://arxiv.org/abs/2401.16063.

[MDK18] Wei Mao, Suhas N. Diggavi, and Sreeram Kannan. Models and information-
theoretic bounds for nanopore sequencing. IEEE Transactions on Information Theory,
64(4):3216–3236, 2018.

[Mit09] Michael Mitzenmacher. A survey of results for deletion channels and related synchro-
nization channels. Probability Surveys, 6:1–33, 2009.

54

https://arxiv.org/abs/2401.16063

[MSV24] Brendon McBain, James Saunderson, and Emanuele Viterbo. On noisy duplication
channels with Markov sources. In 2024 IEEE International Symposium on Information
Theory (ISIT), pages 3438–3443, 2024.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized algo-
rithms and probabilistic analysis. Cambridge university press, 2005.

[MU17] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and
probabilistic techniques in algorithms and data analysis. Cambridge university press,
2017.

[MVS24] Brendon McBain, Emanuele Viterbo, and James Saunderson. Information rates of the
noisy nanopore channel. IEEE Transactions on Information Theory, 70(8):5640–5652,
2024.

[OAC+18] Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey Yekhanin,
Konstantin Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit Gopalan, Bich-
lien Nguyen, et al. Random access in large-scale DNA data storage. Nature biotech-
nology, 36(3):242–248, 2018.

[PHJ+20] William H. Press, John A. Hawkins, Stephen K. Jones, Jeffrey M. Schaub, and Ilya J.
Finkelstein. HEDGES error-correcting code for DNA storage corrects indels and allows
sequence constraints. Proceedings of the National Academy of Sciences, 117(31):18489–
18496, 2020.

[PLW22] Francisco Pernice, Ray Li, and Mary Wootters. Efficient capacity-achieving codes
for general repeat channels. In 2022 IEEE International Symposium on Information
Theory (ISIT), pages 3097–3102, 2022.

[PT21] Henry D. Pfister and Ido Tal. Polar codes for channels with insertions, deletions, and
substitutions. In 2021 IEEE International Symposium on Information Theory (ISIT),
pages 2554–2559, 2021.

[PW24] Yury Polyanskiy and Yihong Wu. Information Theory: From Coding to Learning.
Cambridge University Press, 2024. Available at https://people.lids.mit.edu/yp/
homepage/data/itbook-export.pdf.

[RRC+13] Michael G. Ross, Carsten Russ, Maura Costello, Andrew Hollinger, Niall J. Lennon,
Ryan Hegarty, Chad Nusbaum, and David B. Jaffe. Characterizing and measuring
bias in sequence data. Genome biology, 14:1–20, 2013.

[Rub22] Ittai Rubinstein. Explicit and efficient construction of nearly optimal rate codes for
the binary deletion channel and the Poisson repeat channel. In 49th International
Colloquium on Automata, Languages, and Programming (ICALP 2022), pages 105:1–
105:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

[Rub23] Ittai Rubinstein. Average-case to (shifted) worst-case reduction for the trace recon-
struction problem. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors,
50th International Colloquium on Automata, Languages, and Programming (ICALP
2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages
102:1–102:20, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik.

55

https://people.lids.mit.edu/yp/homepage/data/itbook-export.pdf
https://people.lids.mit.edu/yp/homepage/data/itbook-export.pdf

[SGPY21] Sundara Rajan Srinivasavaradhan, Sivakanth Gopi, Henry D. Pfister, and Sergey
Yekhanin. Trellis BMA: Coded trace reconstruction on IDS channels for DNA stor-
age. In 2021 IEEE International Symposium on Information Theory (ISIT), pages
2453–2458, 2021.

[TPFV22] Ido Tal, Henry D. Pfister, Arman Fazeli, and Alexander Vardy. Polar codes for the
deletion channel: Weak and strong polarization. IEEE Transactions on Information
Theory, 68(4):2239–2265, 2022.

[TYYM+15] SM Hossein Tabatabaei Yazdi, Yongbo Yuan, Jian Ma, Huimin Zhao, and Olgica
Milenkovic. A rewritable, random-access DNA-based storage system. Scientific reports,
5(1):14138, 2015.

[Ver18] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications
in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cam-
bridge University Press, 2018.

[YGM17] SM Hossein Tabatabaei Yazdi, Ryan Gabrys, and Olgica Milenkovic. Portable and
error-free DNA-based data storage. Scientific reports, 7(1):5011, 2017.

56

	Introduction
	Our contributions
	Related work

	Preliminaries
	Notation
	Channels
	Entropy and information rates for stochastic processes and notions of capacity
	A strengthening of Fekete's lemma
	Concentration inequalities

	Capacity theorems for channels with input-correlated synchronization errors
	Admissible channels
	Existence of relevant limits for admissible channels
	Information capacity of admissible channels is achieved by stationary ergodic process
	Information capacity of admissible channels is achieved by Markov process
	Coding capacity equals information capacity, and existence of dense codes from stationary ergodic processes
	Convergence of information density for block-independent process
	Capacity-achieving codes for admissible channels
	Dense capacity-achieving codes for admissible channels

	Some special cases of our capacity theorems
	The Mao-Diggavi-Kannan ISI model
	Multi-trace channels with input-correlated synchronization errors
	Capacity theorems for trimming synchronization channels
	Channels with runlength-dependent deletions

	Warmup: efficient capacity-achieving codes for channels with runlength-dependent deletions
	Construction
	Analysis

	Efficient capacity-achieving codes for multi-trace channels with runlength-dependent deletions
	Auxiliary results
	Construction
	Analysis

	Lower bounds on the capacity of a threshold deletion channel
	First lower bound
	Second lower bound
	Achievable rates for = 2 and = 3

