
Decoding Insertions/Deletions via List Recovery
Anisha Banerjee∗, Roni Con†, Antonia Wachter-Zeh∗, and Eitan Yaakobi†

∗Institute for Communications Engineering, Technical University of Munich (TUM), Munich, Germany
†Department of Computer Science, Technion - Israel Institute of Technology, Haifa 3200003, Israel

Email: anisha.banerjee@tum.de, roni.con93@gmail.com, antonia.wachter-zeh@tum.de, yaakobi@cs.technion.ac.il

Abstract—In this work, we consider the problem of efficient
decoding of codes from insertions and deletions. Most of the
known efficient codes are codes with synchronization strings
which allow one to reduce the problem of decoding insertions
and deletions to that of decoding substitution and erasures. Our
new approach, presented in this paper, reduces the problem
of decoding insertions and deletions to that of list recovery.
Specifically, any (ρ, 2ρn+1, L)-list-recoverable code is a (ρ, L)-list
decodable insdel code. As an example, we apply this technique to
Reed–Solomon (RS) codes, which are known to have efficient list-
recovery algorithms up to the Johnson bound. In the adversarial
insdel model, this provides efficient (list) decoding from t insdel
errors, assuming that t ·k = O(n). This is the first efficient insdel
decoder for [n, k] RS codes for k > 2. Additionally, we explore
random insdel models, such as the Davey-MacKay channel,
and show that for certain choices of ρ, a (ρ, n1/2+0.001, L)-list-
recoverable code of length n can, with high probability, efficiently
list decode the channel output, ensuring that the transmitted
codeword is in the output list. In the context of RS codes,
this leads to a better rate-error tradeoff for these channels
compared to the adversarial case. We also adapt the Koetter-
Vardy algorithm, a famous soft-decision list decoding technique
for RS codes, to correct insertions and deletions induced by the
Davey-MacKay channel.

I. INTRODUCTION

Error-correcting codes (codes, for short) are designed to
enable the recovery of original information from data that has
been corrupted. The primary corruption models studied are
substitutions or erasures. In these models, each symbol in the
transmitted word is either replaced with a different symbol
from the alphabet (a substitution) or with a ’?’ (an erasure).

Another important model that has been considered since
the works of Shannon and Hamming is that of insertions and
deletions (insdel errors, for short). An insertion error is when a
new symbol is inserted between two symbols of the transmitted
word and a deletion is when a symbol is removed from the
transmitted word. For example, over the binary alphabet, when
100110 is transmitted, we may receive the word 1101100,
which is obtained from two insertions (1 at the beginning and
0 at the end) and one deletion (one of the 0’s at the beginning
of the transmitted word). The insdel error model is as natural
as that of substitutions and erasures; however, with the loss
in synchronization between the sender and the receiver, insdel
errors are much more challenging to handle.

Motivated by applications such as over-/under-samping and
DNA-based data storage, in recent years many researchers
studied and designed codes that can correct from insdel errors

The research was Funded by the European Union (ERC, DNAStorage,
101045114 and EIC, DiDAX 101115134). Views and opinions expressed are
however those of the authors only and do not necessarily reflect those of the
European Union or the European Research Council Executive Agency. Neither
the European Union nor the granting authority can be held responsible for
them.

This work was also supported by a DFG Middle-East Grant, under grant
number WA3907/12-1.

[1–16], just to name a few. These works, among many others,
contributed a lot to our knowledge about dealing with insdel
errors. However, still our understanding of this model lags
far behind our understanding of codes that correct erasures
and substitution errors (we refer the reader to the following
excellent surveys [13, 17, 18]).

In this paper, we address the problem of decoding codes
against insdel errors. We first describe the following simple
coding scheme that combines classical codes (capable of
correcting errors and erasures) and indices. Specifically, for
any codeword c = (c1, . . . , cn) ∈ C, we create a new
codeword c′ = ((i1, c1), . . . , (in, cn)) ∈ C′ where we observe
that the alphabet of the new code is larger (by a factor of n).
At the decoding side, upon receiving

((i1, yi1), . . . , (im, yim)) ,

the decoder first decodes the indices using the following
simple rule. For every j ∈ [n], if j does not appear in
i1, . . . , im or if j appears more than once, declare c̃j to be an
erasure. Otherwise, j = is for some unique s ∈ [m], and set
c̃j = yis . It is easy to see that if δn insdel errors occur to c′,
then c̃ can be obtained from c by performing t substitutions
and e erasures.

There is a main drawback with this construction. The
alphabet size of the code C′ grows with n.1 In a breakthrough
work [3, 19], Haeupler and Shahrasbi constructed a sequence
of indices (i1, . . . , in), termed as ε self-matching string,
over finite alphabet size such that if we replace the indices
(1, . . . , n) with (i1, . . . , in) in the construction of C′ then we
get that C′ is a code over an alphabet of size Oε(1) that can
correct from δn insdel errors and has a rate of 1− δ − ε.

In this paper, we present a different approach for decoding
codes against insdel errors. Our idea is to reduce the problem
of insdel decoding to that of list recovery. Namely, if C is a list-
recoverable code with an efficient list recovery algorithm, then,
we can efficiently list decode C from insdel errors. The number
of insdel errors we can list decode from is determined by the
parameters of the list recoverable codes. See Theorem II.1 for
the formal statements. This approach allows us to efficiently
decode insdel errors in several classes of codes. As an example
for our approach, we consider the well-known Reed–Solomon
(RS, for short) codes which have an efficient list-recovery
algorithm up to the Johnson bound [20] and get an efficient
unique decoding algorithm for RS codes against insdel errors
(the amount of insdel errors that can be corrected efficiently
is determined by the Johnson bound). Although RS codes
have been studied in the context of insdel errors in recent
years [21–29], the only efficient non-trivial decoding algorithm

1In fact, in order to make the rate of the code C′ close to C, the alphabet
of C needs to be at least Ω(n1/ε).

ar
X

iv
:2

50
5.

02
45

2v
1

 [
cs

.I
T

]
 5

 M
ay

 2
02

5

that decodes RS codes from insdel errors was given in [30].
Specifically, in [30], the author presents a decoding algorithm
for the [n, 2]q RS code constructed in [27] that can decode up
to n− 3 deletions in linear time.

As a consequence of our results, we obtain a polynomial
time decoding algorithm for [n, k]q RS codes that can correct
up to t insdel errors as long as t · k = O(n).

Subsequently, we also adapt this analysis to the Davey-
MacKay channel [31], a probabilistic insdel channel. Therein,
a better rate-error tradeoff is observed. Finally, we modi-
fied a well-known soft-decision list decoding algorithm for
Reed-Solomon (RS) codes, namely the Koetter-Vardy algo-
rithm [32], to make it compatible with this channel.

A. Preliminaries

Throughout, Fq will denote a finite field of order q. We
denote by dH(·, ·), the Hamming distance between two strings.
We shall use the notation

(Fq

ℓ

)
to refer to all subsets of size

ℓ of Fq . Further, we write
(Fq

ℓ

)n
to refer to all possible S1 ×

S2 × · · · × Sn where each Si is a subset of Fq of size ℓ.
Finally, we write dH(c, S) := |{i ∈ [n]|ci /∈ Si}|. With these
notations, we are ready to define a list recoverable code.

Definition I.1. For ρ ∈ [0, 1] and integers ℓ, L, we say that a
code C ⊆ Fn

q is (ρ, ℓ, L)-list-recoverable if for any S ∈
(Fq

ℓ

)n
there are at most L different codewords c ∈ C which satisfy
that dH(c, S) ≤ ρn.

List recoverable codes are an important class of codes that
have found applications in domains such as pseudorandom-
ness [33], algorithms [34], combinatorial group testing [35],
hashing, and many more. As such, studying the limitation and
constructing (efficient) list recoverable codes is a very active
area of research [36–40], just to name a few. The Johnson
bound for list recoverable codes (see e.g., [37, Theorem 2.3])
states that a code C with relative Hamming distance δ is
(ρ, ℓ, L) for any ℓ < (1−ρ)2

1−δ with L = ℓ
(1−ρ)2−(1−δ)ℓ . Observe

that a (ρ, 1, L)-list-recoverable code is a list decodable code.
Thus, list-recoverable codes are a generalization of the more
widely studied list-decoding model.

Recall that we are dealing with insdel errors in this paper,
and the metric that we are going to use is the edit metric.

Definition I.2. The edit distance between s and s′, denoted by
ded(s, s

′), is the minimal number of insertions and deletions
needed in order to turn s into s′.

For a code C we write, ded(C) = maxc,c′∈C,c̸=c′ ded(c, c
′).

Note that list decoding can also be defined in the insdel model.
Namely, we say that C is (ρ, L) list decodable insdel code if
for every y, it holds that |{c ∈ C | ded(c, y) ≤ ρn}| ≤ L.

We now formally define RS codes.

Definition I.3. Let α = (α1, α2, . . . , αn) ∈ Fn
q where αi ̸=

αj for every distinct i, j ∈ [n]. The [n, k]q Reed–Solomon
(RS) code of dimension k and block length n associated with
the evaluation vector α is defined to be the set of codewords

RSn,k(α) := {(f(α1), . . . , f(αn)) | f ∈ Fq[x], deg f < k} .

RS codes are among one of the most widely used codes
in theory and practice. They have efficient unique decoding
algorithms up to half of the minimum distance and also
efficient list decoding algorithms up to the Johnson bound [20].

Note here that since RS codes have R = 1− δ, then we have
that ρ < 1−

√
ℓR.

B. Our Results

In this paper, we present a connection between list recov-
erable codes and insdel codes. This connection is achieved
by a simple reduction where we take an input to an insdel
decoding algorithm and transform it to an input to a list
recovery algorithm. This implies that if one has a code with
an efficient list recovery algorithm, then the code has also an
efficient insdel decoding algorithm.

Then, we also apply our idea to probabilistic errors and
show that over random insdel channels we can slightly im-
prove the rate-error correction trade-off.

More specifically, we prove the following statements.
• Any (ρ, 2ρn+1, L)-list-recoverable code C is an (ρ, L)-

list decodable insdel code. Moreover, if ρn is smaller than
half the edit distance of C, then the decoding is unique
(see Theorem II.1 for a formal description).

• Let Pi, Pd ∈ (0, 1) and ε > 0. Let C be a (E +
ε,O(n1/2+0.01), L)-list-recoverable code, where E is a
constant depending on Pi and Pd. Then, C is a list
decodable code in the random insdel model (the Davey-
MacKay channel [31] with a constraint on the maximum
length of an insertion burst) with insertion and deletion
probabilities being Pi and Pd respectively. Namely, with
high probability, upon transmitting any codeword c ∈ C
through this channel, we can efficiently list decode the
output so that c is in the output list (see Theorem III.6
for the formal statements). An analogous result for the
probabilistic deletion channel is also presented in Theo-
rem III.3.

Finally, we adapt the Koetter-Vardy algorithm [32] to insdel
channels. This is the only decoding algorithm for RS codes
that can leverage soft information. Additionally, we show how
to jointly decode multiple received sequences, which is useful
in applications like DNA data storage that provide multiple
erroneous copies [41–46]. We also present simulation results
for decoding insdel errors in RS codes for various regimes.

II. DECODING ADVERSARIAL INSDELS VIA
LIST-RECOVERY

This section shows our main result about decoding insdel
errors via list recovery. We then consider the specific case of
RS codes with an efficient list recoverable algorithm.

Algorithm 1: Decode

Input: y1, . . . , ym, odd integer ℓ
Output: A codeword c ∈ C

1 for i ∈ [n] do
2 Si ← {ymax{1,i−⌊ℓ/2⌋}, . . . , ymin{n,i+⌊ℓ/2⌋}}
3 end
4 Execute List-Recover with the lists S1, . . . , Sn to get
L ⊆ C.

5 return {c ∈ L|ded(c,y) ≤ ρn}.

Theorem II.1. Let ρ ∈ [0, 1] and set ℓ = 2ρn+ 1. 2 Assume
that C is a (ρ, ℓ, L)-list-recoverable code with an algorithm

2for the sake of notations we assume that ρn is an integer.

List-Recover that runs in time T . Let y ∈ Fm
q . Then, running

Algorithm 1 on input y returns a list L′ of size |L′| ≤ L such
that for every c ∈ L′, we have ded(c,y) ≤ ρn. The running
time of Algorithm 1 is O(T + L · n2).

Moreover, if ρn ≤ ⌊ded(C)−1
2 ⌋, then |L′| ≤ 1.

Proof: First note that by the definition of the Si’s, we have
that |Si| ≤ ℓ for all i ∈ [n]. We now show that for every c ∈ C,
such that ded(c,y) ≤ ρn, we have that dH(c, S) ≤ ρn. Indeed,
denote by a and b the number of deletions and insertions,
respectively, that are needed to transform c to y.

Let ci be the ith symbol of c and assume that it was not
deleted by any of the a deletions and let j be its position in
y. We have that −a ≤ j− i ≤ b and since a and b are at most
ρn, we must have that ci ∈ Si. Thus, the number of is for
which ci /∈ Si is at most a ≤ ρn and we conclude that c ∈ L.

Finally, the list-recovery algorithm returns a list L of size
at most L. Thus, in the last step of the algorithm, we can only
reduce the set L to obtain L′.

The running time follows by observing that setting the Sis
takes O(n2), and the last step takes O(L ·n2) since computing
the edit distance between two strings takes O(n2) time.

To prove the moreover part, assume that ρn ≤ ⌊ded(C)−1
2 ⌋

and assume that L′ contains at least two codewords, c and
c′. Then, by the triangle inequality, ded(c, c

′) ≤ ded(c,y) +

ded(c
′,y) ≤ 2 · ⌊ded(C)−1

2 ⌋ < ded(C), which is a contradiction.

Remark II.2. We observe that if one needs to correct only
from deletions or only from insertions, then we can set ℓ = αn
instead of 2αn+ 1 in Theorem II.1.

We can apply the above theorem with list-recoverable codes.
For RS codes, we apply the polynomial time Guruswami-
Sudan decoder [47], and obtain the following corollary.

Corollary II.3. Let ε > 0 and let C be an [n, k]q RS code
that can correct from t insdel errors where

t ≤ n−
√
(1 + ε) · kn · (2t+ 1) . (1)

Then, there is a deterministic insdel unique-decoding algo-
rithm for C that can correct t insdel errors in time O(n3ε−6).

Remark II.4. Observe that for the inequality (1) in Corol-
lary II.3 to hold, we cannot have t = Ω(n) and k = Ω(n). In
fact, it must be that k · t = O(n).

III. PROBABILISTIC CHANNELS

This section seeks to extend the application of Algorithm 1
to probabilistic channels that corrupt the transmitted sequence
with random insertion and deletion errors. We focus on the
Davey-MacKay channel [31], which is parameterized by its
insertion and deletion probabilities, denoted by Pi and Pd,
respectively. It describes a channel that involves insertion,
deletion and substitution errors, as a finite state machine. In
this work, substitution errors are ignored and Fig. 1, which
illustrates this simplified channel model, suggests that for each
symbol that awaits transmission, say xm, one of three events
may occur: a random symbol is inserted into the received
stream with probability Pi and xm remains in the transmission
queue; or the next bit queued for transmission, i.e., xm, is
deleted with probability Pd; or xm is received with probability
Pt = 1− Pi − Pd.

xi xi+1· · · · · ·

Pd

Delete

Transmit

Pt

Insert

Pi

Fig. 1. Allowed transitions in the insertion and deletion channel [31]

A significant challenge posed by such channels is the loss
of synchronization in symbol positions. To quantify the extent
of misalignment between the transmitted and the received
symbols, we use the concept of the drift [31].

Definition III.1. The integer drift Dm is the difference be-
tween the number of insertions and the number of deletions
that occurred until the mth bit has been queued for transmis-
sion.

A. The Deletion Channel

We begin by examining a specific case of the Davey-
MacKay channel that does not produce insertion errors, i.e.,
Pi = 0. This is commonly known as the deletion channel,
wherein each transmitted symbol is deleted independently with
probability Pd ∈ (0, 1). By utilizing the statistical properties
of the drift variable Dm, we establish the following bound
concerning the error probability of a list-recovery decoder that
uses sufficiently large lists for each transmitted symbol.

Proposition III.2. Assume a sequence x ∈ Fn
q is transmitted

over a channel with deletion probability Pd, resulting in the
received sequence y ∈ Fr

q , where r < n. If for all m ∈ [n],
we assign Sm ←− {ya, ya+1, . . . , yb}, where a = max(m +
E[Dm]− C, 1) and b = min(m+ E[Dm] + C − 1, r), where
C is chosen such that |Sm| ≤ 2C = n

1
2+0.001 and let I =

{i|xi ̸∈ Si}, then it holds that

Pr[|I| ≥ (Pd + ε)n] ≤ exp(−Ω(n0.002)).

Proof: We begin by observing that for any m ∈ [εn, n],
Pr[xm ̸∈ Sm|xm was transmitted] = Pr[|Dm − E[Dm]| >
C]. Since Dm can be seen as a sum of m random variables,
each iid and bounded within [−1, 0], we apply Hoeffding’s
inequality [48] and the fact that m ≥ εn to arrive at

Pr[xm ̸∈ Sm|xm was transmitted] ≤ 2e−2C2/m ≤ e−Ω(n0.002).

By the union bound, we further deduce that the probability
that there exists an i ∈ [εn, n] such that xi was transmitted and
xi /∈ Si is at most n · exp(−Ω(n0.002)) = exp(−Ω(n0.002)).

Also note that since the event that any xi is transmitted,
can be modeled by a Bernoulli random variable with success
probability 1−Pd, it follows from Chernoff’s bound [48] that
Pr[|y| < (1− Pd − ε)n] ≤ exp(−Ω(n)).

Thus, to conclude, we bound the probability that |I| ≥
(Pd+ε)n by the sum of the probability that |y| < (1−Pd−ε)n
and the probability that given that |y| ≥ (1− Pd − ε)n, there
exists an i ∈ [n] such that xi was transmitted and xi /∈ Si.
The proposition follows.

Proposition III.2 suggests that any list-recoverable code can
be used over deletion channels to correct all errors with very
high probability. This is stated more formally as follows.

Theorem III.3. Let Pd ∈ (0, 1) and let ε > 0. Let C be
an [n, k]q code that is (Pd+ ε, n1/2+0.001, L)-list-recoverable
with an efficient list recoverable algorithm List-recover. Let
c ∈ C be any codeword and denote by y the output of the
deletion channel with probability Pd when given c as an input.

Let S1, . . . , Sn be the lists generated from y according
to Proposition III.2. Then, with probability exp(−Ω(n0.002)),
running List-recover produces a list L such that c ∈ L.

Moreover, if (Pd + ε)n ≤ ⌊ded(C)−1
2 ⌋, then |L| = 1.

Remark III.4. Note that in contrast to Remark II.4, here,
as one would expect, the rate-error tradeoff is better. Indeed,
for the unique decoding case (i.e., the “moreover” part of
Theorem III.3), in order to decode (with high probability) from
any constant deletion probability Pd ∈ (0, 1), we need that
k = O(n1/2−0.001).

B. The Davey-MacKay Channel

We now endeavor to generalize Theorem III.3 to channels
that also permit insertions. Since the length of an insertion
burst has a geometric distribution, as suggested by Fig. 1,
we assume as in [31], for ease of analysis, that any burst of
insertions is limited to B symbols. This implies that

Pr[D1 = i] =

{
δBPd if i = −1,
δB(1− Pi)(1− Pd)P

i
i if i ∈ [0, B],

where δB = Pd + (1− Pd)(1− PB+1
i) is a normalizing con-

stant. Now to establish a result analogous to Proposition III.2,
we exploit the statistical properties of Dm as before.

Proposition III.5. Assume a Davey-MacKay channel with
insertion and deletion probabilities Pi and Pd respectively,
and the maximum number of consecutive insertions limited to
a finite value. Consider a sequence x ∈ Fn

q that is transmitted
over this channel, resulting in the received sequence y ∈ Fr

q .
If for all m ∈ [n], we assign Sm ←− {ya, ya+1, . . . , yb}, where
a = max(m+E[Dm]−C, 1) and b = min(m+E[Dm]+C−
1, r), where C is chosen such that |Sm| ≤ 2C = n

1
2+0.001

and let I = {i|xi ̸∈ Si}, then

Pr[|I| ≥ (−E[D1] + ε)n] ≤ exp(−Ω(n0.002)).

Proof: As in the proof of Proposition III.2, we observe
that for any m ∈ [εn, n], Pr[xm ̸∈ Sm|xm was transmitted] =
Pr[|Dm−E[Dm]| > C]. Evidently, Dm can be seen as the sum
of m i.i.d. random variables, each distributed identically to D1

and thus bounded to [−1, B], where B denotes the maximum
length of a burst of insertions. By applying Hoeffding’s
inequality [48] and 2C = n

1
2+0.001, we arrive at

Pr[xm ̸∈ Sm|xm was transmitted] ≤ 2 exp
(
− n0.002

2(B + 1)2

)
.

Once again, the union bound lets us deduce that the probability
that there exists an i ∈ [εn, n] such that xi was transmitted and
xi /∈ Si is at most n · exp(−Ω(n0.002)) = exp(−Ω(n0.002)).

Since Pr[|y| < (1 + E[D1] − ε)n] = Pr[Dm − E[Dm] ≤
−nε], Hoeffding’s inequality again brings us to

Pr[|y| < (1 + E[D1]− ε)n] = Pr[Dn − E[Dn] < −εn]

≤ exp
(
− 2ε2n

(B + 1)2

)
≤ e−Ω(n).

Lastly, we bound the probability that |I| ≥ (−E[D1] + ε)n
by the sum of the probability that |y| < (1 + E[D1] − ε)n

and the probability that given that |y| ≥ (1 + E[D1] − ε)n,
we have an i ∈ [n] such that xi was transmitted and xi /∈ Si.
The proves the proposition.

Analogous to Proposition III.2, this proposition implies that
any list-recoverable code may be used over the Davey-MacKay
channel.

Theorem III.6. Let Pi, Pd ∈ (0, 1) and let ε > 0. Let C
be an [n, k]q code that is (−E[D1] + ε, n1/2+0.001, L) list-
recoverable with an efficient list recoverable algorithm List-
recover. Let c ∈ C be any codeword and denote by y the
output of the Davey-MacKay channel with probabilities Pi and
Pd (with a finite insertion burst length) when given c as input.

Let S1, . . . , Sn be the lists generated from y according
to Proposition III.5. Then, with probability exp(−Ω(n0.002)),
running List-recover produces a list L such that c ∈ L.

Moreover, if (−E[D1] + ε)n ≤ ⌊ded(C)−1
2 ⌋, then |L| = 1.

Remark III.7. The rate-error tradeoff is similar to the dis-
cussion in Remark III.4.

IV. KOETTER-VARDY ALGORITHM FOR INSDELS

In this section, we adapt a decoding algorithm for Reed-
Solomon codes that generalizes list decoding and list recovery,
namely the Koetter-Vardy (KV) algorithm [32], to correct
insdel errors. This algorithm extends the Guruswami-Sudan
(GS) algorithm of RS codes by incorporating soft information
concerning the received symbols. It accomplishes this by
using the reliability information of these symbols to form
a multiplicity matrix that assigns unequal weights to the
interpolation points of the RS code.

A. Reliability Matrix for Insdels

The primary obstacle to adapting the KV algorithm for use
over channels susceptible to insertions and deletions alongside
substitutions lies in the computation of the reliability matrix.
Since such channels are not memoryless, we rely on the
concept of the generalized reliability matrix [32, Eq. (46)].
Specifically, if we denote a fixed ordering of Fq as α1, . . . , αq ,
then the (i, j)th entry of the reliability matrix, denoted as Π,
should quantify the probability that the ith symbol in the
transmitted codeword x ∈ Fn

q equals αj , for all j ∈ [q]
and i ∈ [n], given a specific received sequence, say y, i.e.,
πi,j ≜ Pr[xi = αj |y]. To compute this quantity, we first
note that in the context of an insertion-deletion channel, any
transmitted symbol xi either undergoes transmission with a
specific drift, or deletion. Thus, given an [n, k]q RS code C,
and a vector y ∈ Fr

q that results from the transmission of some
x ∈ C over the Davey-MacKay channel, Pr[xi = αj |y] can
be expanded as follows.

Pr[xi = αj |y] =

∑
x∈C

xi=αj

Pr[y,x]∑
x∈C Pr[y,x]

≈

∑
x∈Fn

q
xi=αj

Pr[y,x]∑
x∈Fn

q
Pr[y,x]

.

The approximation is necessary since marginalizing
Pr[y,x] over (a subset of) C is computationally expensive. The
quantity

∑
x∈Fn

q
Pr[y,x] signifies the probability of receiving

a specific sequence y ∈ Fr
q given that a vector in Fn

q was
transmitted and is constant for all y of a specific length r,
if all transmitted sequences are equally likely. For brevity
of notation, we denote this by Pn(y) and can compute it
as the sum of weights of all paths on a two-dimensional
lattice from coordinates (0, 0) to (n, r), where paths consist

of horizontal, vertical and diagonal steps with weights Pi/q,
Pd and Pt/q respectively [31, 49]. Note that horizontal edges
are absent in the final row, as insertions cannot follow the
transmission of the final symbol. This process accounts for
every possible sequence of insertion, deletion, and transmis-
sion events, thereby emulating the Davey-MacKay channel
depicted in Figure 1. Next, we recall that xi is either deleted or
transmitted with a certain drift, and proceed by decomposing∑

x∈Fn
q ,xi=αj

Pr[y,x] as follows.∑
x∈Fn

q ,xi=αj

Pr[y,x, xi deleted]

=

r∑
l=1

(∑
x∈Fi−1

q

Pr[yl−1
1 ,x]

)
Pd

(∑
x∈Fn−i

q

Pr[yr
l ,x]

)
,

∑
x∈Fn

q ,xi=αj

Pr[y,x, xi transmitted]

=

r∑
l=1

(∑
x∈Fi−1

q

Pr[yl−1
1 ,x]

)
Ptϕ(yl|αj)

(∑
x∈Fn−i

q

Pr[yr
l+1,x]

)
,

where ϕ(α|β) = 1 if α = β and 0 otherwise. These equations
allow us to write

πi,j =
Pd

∑r
l=1 Pi−1(y

l−1
1)Pn−i(y

r
l)

PN (y)

+
Pt

∑r
l=1 ϕ(yl|αj)Pi−1(y

l−1
1)Pn−i(y

r
l+1)

Pn(y)
. (2)

In case of multiple received sequences, say y(1), . . . ,y(M),
which result from independent transmissions of the encoding
of the same information vector, say u ∈ Fk

q , where k < n,
the reliability matrix can be computed in a similar spirit as
before, i.e., πi,j ≜ Pr[xi = αj |y(1), . . . ,y(M)]. Note that

Pr[xi = αj |y(1), . . . ,y(M)]=

∑
u∈Fk

q
:xi=αj

Pr[u,y(1), . . . ,y(M)]∑
u∈Fk

q
Pr[u,y(1), . . . ,y(M)]

(i)
=

∑
u∈Fk

q
:xi=αj

Pr[u]
∏M

h=1Pr[y
(h)|u]∑

u∈Fk
q
Pr[u]

∏M
h=1 Pr[y

(h)|u]

(ii)
=

∏M
h=1

∑
u∈Fk

q
:xi=αj

Pr[u,y(h)]∏M
h=1

∑
u∈Fk

q
Pr[u,y(h)]

=

M∏
h=1

∑
x∈C,xi=αj

Pr[x,y(h)]∑
x∈C Pr[x,y

(h)]

=

M∏
h=1

Pr[xi = αj |y(h)],

where (i) follows from the fact that the received vectors
are acquired from independent transmissions of the same
codeword and (ii) results from uniform distribution of all
information vectors.

Observe that the two-dimensional lattice used to compute
Pn(y

r
1), as discussed earlier, can also be flipped along the

off-diagonal, enabling the traversal of the finite state machine
in reverse, i.e., from the ending to the starting state. Hence,
the order of received and transmitted symbols is altered:
the columns, from left to right, correspond to the symbols

10−3 10−2 10−1

10−3

10−2

10−1

100

P

FE
R

M = 1, Pd = Pi = P/2

M = 1, Pd = P , Pi = 0

M = 1, Pi = P , Pd = 0

M = 2, Pd = Pi = P/2

M = 2, Pd = P , Pi = 0

M = 2, Pi = P , Pd = 0

M = 4, Pd = Pi = P/2

M = 4, Pd = P , Pi = 0

M = 4, Pi = P , Pd = 0

Fig. 2. Frame error rates for a [100, 33] RS code over field F101, where M
denotes the number of received sequences, Pd the deletion probability and
Pi the insertion probability.

yr, . . . , y1, while the rows, from top to bottom, represent
the symbols xn, . . . , x1. This change may impact the second
term in (2) due to asymmetry introduced by the non-uniform
diagonal edge weights Ptϕ(yr|αj). For instance, when using
the forward lattice, one or more symbols in yr−1

1 affect πn,j ,
but this is not the case in the reversed model. To remedy
this, we use a bidirectional version of the computation of πi,j

presented in (2), i.e., we compute πi,j on the forward and the
reversed lattice, and ultimately use the average of the two.

B. Numerical Results

To assess the performance of the proposed decoder for
correcting insdels, we use a primitive [100, 33] RS code over
the field F101, with its evaluation points randomly permuted.
A random permutation of the evaluation points is chosen
because, according to [50], the respective RS code is more
likely to have a better insdel correction capability. We set the
list size parameter to 5 and simulate the transmission of its
codewords over channels with varying insertion and deletion
probabilities and different numbers of received sequences.
No limit on the maximum length of a burst of insertions
is imposed. To limit computational complexity, the marginal-
ization in the numerator of πi,j in (2), is performed over a
smaller set of indices centered around the expected number
of received symbols after the transmission of xi. The frame
error rates observed are shown in Figure 2. As expected, the
error rates decrease with an increasing number of received
sequences. It also seems that correcting deletions is more
challenging than correcting insertions. This can be attributed
to the fact that insertions only shift the transmitted symbols
further to the right, allowing the decoder to still access the
originally transmitted symbols, albeit with a potentially lower
multiplicity. In contrast, deletions result in the complete loss of
transmitted symbols. A combination of insertion and deletion
errors is even more difficult to correct, as it becomes harder
to ascertain the true positions of the transmitted symbols in
the received sequence.

REFERENCES

[1] L. J. Schulman and D. Zuckerman, “Asymptotically good codes
correcting insertions, deletions, and transpositions,” IEEE Transactions
on Information Theory, vol. 45, no. 7, pp. 2552–2557, 1999.

[2] V. I. Levenshtein, “Bounds for deletion/insertion correcting codes,”
in Proceedings IEEE International Symposium on Information Theory
(ISIT), IEEE, 2002, p. 370.

[3] B. Haeupler and A. Shahrasbi, “Synchronization strings: Codes for
insertions and deletions approaching the Singleton bound,” Journal of
the ACM, vol. 68, no. 5, pp. 1–39, 2021.

[4] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-
redundancy codes for correcting multiple deletions,” IEEE Transac-
tions on Information Theory, vol. 64, no. 5, pp. 3403–3410, 2017.

[5] V. Guruswami and C. Wang, “Deletion codes in the high-noise and
high-rate regimes,” IEEE Transactions on Information Theory, vol. 63,
no. 4, pp. 1961–1970, 2017.

[6] C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes
correcting a burst of deletions or insertions,” IEEE Transactions on
Information Theory, vol. 63, no. 4, pp. 1971–1985, 2017.

[7] R. Gabrys and F. Sala, “Codes correcting two deletions,” IEEE
Transactions on Information Theory, vol. 65, no. 2, pp. 965–974, 2018.

[8] K. Cheng, Z. Jin, X. Li, and K. Wu, “Deterministic document exchange
protocols and almost optimal binary codes for edit errors,” Journal of
the ACM, vol. 69, no. 6, pp. 1–39, 2022.

[9] J. Sima, R. Gabrys, and J. Bruck, “Optimal codes for the q-ary deletion
channel,” in 2020 IEEE International Symposium on Information
Theory (ISIT), IEEE, 2020, pp. 740–745.

[10] J. Sima, R. Gabrys, and J. Bruck, “Optimal systematic t-deletion cor-
recting codes,” in 2020 IEEE International Symposium on Information
Theory (ISIT), IEEE, 2020, pp. 769–774.

[11] B. Haeupler, “Optimal document exchange and new codes for in-
sertions and deletions,” in 2019 IEEE 60th Annual Symposium on
Foundations of Computer Science (FOCS), IEEE, 2019, pp. 334–347.

[12] K. Cheng, V. Guruswami, B. Haeupler, and X. Li, “Efficient linear
and affine codes for correcting insertions/deletions,” in Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
D. Marx, Ed., SIAM, 2021, pp. 1–20.

[13] B. Haeupler and A. Shahrasbi, “Synchronization strings and codes for
insertions and deletions–a survey,” IEEE Transactions on Information
Theory, vol. 67, no. 6, pp. 3190–3206, 2021.

[14] V. Guruswami, B. Haeupler, and A. Shahrasbi, “Optimally resilient
codes for list-decoding from insertions and deletions,” in Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing
(STOC), 2020, pp. 524–537.

[15] V. Guruswami and J. Håstad, “Explicit two-deletion codes with re-
dundancy matching the existential bound,” in Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2021,
pp. 21–32.

[16] V. Guruswami, X. He, and R. Li, “The zero-rate threshold for adver-
sarial bit-deletions is less than 1/2,” IEEE Transactions on Information
Theory, vol. 69, no. 4, pp. 2218–2239, 2022.

[17] M. Mitzenmacher, “A survey of results for deletion channels and re-
lated synchronization channels,” Probability Surveys, vol. 6, pp. 1–33,
2009.

[18] M. Cheraghchi and J. Ribeiro, “An overview of capacity results for
synchronization channels,” IEEE Transactions on Information Theory,
vol. 67, no. 6, pp. 3207–3232, 2020.

[19] B. Haeupler, A. Shahrasbi, and M. Sudan, “Synchronization strings:
List decoding for insertions and deletions,” in 45th International Col-
loquium on Automata, Languages, and Programming (ICALP 2018),
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2018.

[20] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon
and algebraic-geometric codes,” in Proceedings 39th Annual Sym-
posium on Foundations of Computer Science (FOCS), IEEE, 1998,
pp. 28–37.

[21] R. Safavi-Naini and Y. Wang, “Traitor tracing for shortened and cor-
rupted fingerprints,” in ACM workshop on Digital Rights Management,
Springer, 2002, pp. 81–100.

[22] Y. Wang, L. McAven, and R. Safavi-Naini, “Deletion correcting
using generalized Reed-Solomon codes,” in Coding, Cryptography and
Combinatorics, Springer, 2004, pp. 345–358.

[23] D. Tonien and R. Safavi-Naini, “Construction of deletion correcting
codes using generalized Reed–Solomon codes and their subcodes,”
Designs, Codes and Cryptography, vol. 42, no. 2, pp. 227–237, 2007.

[24] T. D. Duc, S. Liu, I. Tjuawinata, and C. Xing, “Explicit constructions
of two-dimensional Reed-Solomon codes in high insertion and deletion
noise regime,” IEEE Transactions on Information Theory, vol. 67,
no. 5, pp. 2808–2820, 2021.

[25] S. Liu and I. Tjuawinata, “On 2-dimensional insertion-deletion Reed-
Solomon codes with optimal asymptotic error-correcting capability,”
Finite Fields and Their Applications, vol. 73, p. 101 841, 2021.

[26] R. Con, A. Shpilka, and I. Tamo, “Reed–Solomon codes against ad-
versarial insertions and deletions,” IEEE Transactions on Information
Theory, 2023.

[27] R. Con, A. Shpilka, and I. Tamo, “Optimal two-dimensional reed–
solomon codes correcting insertions and deletions,” IEEE Transactions
on Information Theory, 2024.

[28] J. Liu, “Optimal RS codes and GRS codes against adversarial inser-
tions and deletions and optimal constructions,” IEEE Transactions on
Information Theory, 2024.

[29] R. Con, Z. Guo, R. Li, and Z. Zhang, “Random reed-solomon codes
achieve the half-singleton bound for insertions and deletions over
linear-sized alphabets,” arXiv preprint arXiv:2407.07299, 2024.

[30] S. Singhvi, “Optimally decoding two-dimensional reed-solomon codes
up to the half-singleton bound,” arXiv preprint arXiv:2412.20771,
2024.

[31] M. Davey and D. MacKay, “Reliable communication over channels
with insertions, deletions, and substitutions,” IEEE Transactions on
Information Theory, vol. 47, no. 2, pp. 687–698, Feb. 2001.

[32] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of reed-
solomon codes,” IEEE Transactions on Information Theory, vol. 49,
no. 11, pp. 2809–2825, Nov. 2003.

[33] V. Guruswami, C. Umans, and S. Vadhan, “Unbalanced expanders and
randomness extractors from parvaresh–vardy codes,” Journal of the
ACM (JACM), vol. 56, no. 4, pp. 1–34, 2009.

[34] D. Doron and M. Wootters, “High-probability list-recovery, and appli-
cations to heavy hitters,” Leibniz international proceedings in infor-
matics, 2022.

[35] P. Indyk, H. Q. Ngo, and A. Rudra, “Efficiently decodable non-adaptive
group testing,” in Proceedings of the twenty-first annual ACM-SIAM
symposium on Discrete Algorithms, SIAM, 2010, pp. 1126–1142.

[36] A. Rudra and M. Wootters, “Average-radius list-recoverability of ran-
dom linear codes,” in Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SIAM, 2018, pp. 644–662.

[37] B. Lund and A. Potukuchi, “On the list recoverability of randomly
punctured codes,” arXiv preprint arXiv:2005.02478, 2020.

[38] I. Tamo, “Tighter list-size bounds for list-decoding and recovery of
folded reed-solomon and multiplicity codes,” IEEE Transactions on
Information Theory, 2024.

[39] Z. Guo, R. Li, C. Shangguan, I. Tamo, and M. Wootters, “Improved
list-decodability and list-recoverability of reed–solomon codes via tree
packings,” SIAM Journal on Computing, vol. 53, no. 2, pp. 389–430,
2024.

[40] S. Kopparty, N. Resch, N. Ron-Zewi, S. Saraf, and S. Silas, “On list
recovery of high-rate tensor codes,” IEEE Transactions on Information
Theory, vol. 67, no. 1, pp. 296–316, 2020.

[41] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital infor-
mation storage in dna,” Science, vol. 337, no. 6102, pp. 1628–1628,
Sep. 2012.

[42] N. Goldman et al., “Towards practical, high-capacity, low-maintenance
information storage in synthesized dna,” Nature, vol. 494, no. 7435,
pp. 77–80, Feb. 2013.

[43] I. Maarouf, A. Lenz, L. Welter, A. Wachter-Zeh, E. Rosnes, and
A. Graell i Amat, “Concatenated codes for multiple reads of a DNA
sequence,” IEEE Transactions on Information Theory, vol. 69, no. 2,
pp. 910–927, Feb. 2023.

[44] L. Welter, I. Maarouf, A. Lenz, A. Wachter-Zeh, E. Rosnes, and
A. G. I. Amat, “Index-based concatenated codes for the multi-draw
dna storage channel,” in 2023 IEEE Information Theory Workshop
(ITW), Saint-Malo, France: IEEE, Apr. 2023, pp. 383–388.

[45] R. Sakogawa and H. Kaneko, “Symbolwise map estimation for
multiple-trace insertion/deletion/substitution channels,” in 2020 IEEE
International Symposium on Information Theory (ISIT), Los Angeles,
CA, USA: IEEE, Jun. 2020, pp. 781–785.

[46] S. R. Srinivasavaradhan, S. Gopi, H. D. Pfister, and S. Yekhanin, “Trel-
lis bma: Coded trace reconstruction on ids channels for dna storage,”
in 2021 IEEE International Symposium on Information Theory (ISIT),
Jul. 2021, pp. 2453–2458.

[47] V. Guruswami and M. Sudan, “Improved decoding of reed-solomon
and algebraic-geometric codes,” in 39th Annual Symposium on Foun-
dations of Computer Science, FOCS ’98, November 8-11, 1998, Palo
Alto, California, USA, IEEE Computer Society, 1998, pp. 28–39.

[48] M. Mitzenmacher and E. Upfal, Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. New York: Cambridge
University Press, Jan. 2005.

[49] A. Banerjee, A. Lenz, and A. Wachter-Zeh, “Sequential decoding of
multiple sequences for synchronization errors,” IEEE Transactions on
Communications, vol. 72, no. 11, pp. 6660–6676, Nov. 2024.

[50] P. Beelen, R. Con, A. Gruica, M. Montanucci, and E. Yaakobi, Reed-
solomon codes against insertions and deletions: Full-length and rate-
$1/2$ codes, Jan. 2025. arXiv: 2501.11371 [cs].

